首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wine yeasts for the future   总被引:3,自引:0,他引:3  
International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.  相似文献   

2.
The aim of the present study was to perform a fast pre-selection from a great number of wine yeasts using a simple phenotypic-based methodology that allows many different strains to be simultaneously tested. A total of 150 elliptic yeasts, isolated from must and wine from black grapes of a distinctive Italian variety, were studied. Yeasts were identified to genus level by assessing their ability to ferment glucose and their production of spores on acetate agar. The Saccharomyces strains were seeded on BiGGY agar to determine their H(2)S production, on calcium carbonate agar to test their acetic acid production, and on grape-skin agar and on grape-seed agar to assess their interaction with phenolic compounds. The Saccharomyces strains were also examined for fermentative vigor after 2 d or 7 d both with and without the addition of 100 mg L(-1) of SO(2) in must at 20 degrees brix and pH 3.20. At the end of fermentation, the wines produced by the 18 best yeasts were analyzed and the strains were studied for additional biochemical and technological characteristics. The resistance of the strains to simultaneous acid-stress and osmotic-stress was studied carrying out in duplicate winemaking tests in must at 30 degrees brix and pH 2.60. A remarkable heterogeneity among the 150 autochthonous yeasts studied was demonstrated. The phenotypical biodiversity is particularly interesting for several technological characteristics useful in winemaking, such as fermentation vigor, acetic acid production and malic acid content of the wines. The vast majority of the elliptic wine yeasts isolated did not show suitable characteristics, so only 18 strains, 12% of the total, remained for the final tests. Many of the strains that had passed the preliminary screenings revealed some defects when they were studied for fermentation performance, both in standard winemaking and under stressors. Two strains exhibited particularly interesting performances: one strain for winemaking of normal musts and the other for winemaking of musts from dried grapes or under stressful conditions.  相似文献   

3.
Glycerol production by microbial fermentation: a review   总被引:18,自引:0,他引:18  
Microbial production of glycerol has been known for 150 years, and glycerol was produced commercially during World War I. Glycerol production by microbial synthesis subsequently declined since it was unable to compete with chemical synthesis from petrochemical feedstocks due to the low glycerol yields and the difficulty with extraction and purification of glycerol from broth. As the cost of propylene has increased and its availability has decreased especially in developing countries and as glycerol has become an attractive feedstock for production of various chemicals, glycerol production by fermentation has become more attractive as an alternative route. Substantial overproduction of glycerol by yeast from monosaccharides can be obtained by: (1) forming a complex between acetaldehyde and bisulfite ions thereby retarding ethanol production and restoring the redox balance through glycerol synthesis; (2) growing yeast cultures at pH values near 7 or above; or (3) using osmotolerant yeasts. In recent years, significant improvements have been made in the glycerol production using osmotolerant yeasts on a commercial scale in China. The most outstanding achievements include: (1) isolation of novel osmotolerant yeast strains producing up to 130 g/L glycerol with yields up to 63% and the productivities up to 32 g/(L day); (2) glycerol yields, productivities and concentrations in broth up to 58%, 30 g/(L day) and 110-120 g/L, respectively, in an optimized aerobic fermentation process have been attained on a commercial scale; and (3) a carrier distillation technique with a glycerol distillation efficiency greater than 90% has been developed. As glycerol metabolism has become better understood in yeasts, opportunities will arise to construct novel glycerol overproducing microorganisms by metabolic engineering.  相似文献   

4.
The kinetics and metabolic behavior of Kloeckera apiculata mc1 and Saccharomyces cerevisiae mc2 in composite culture was investigated. K. apiculata showed a higher viability through the fermentation; however the maximum cell density of both yeasts decreased. This behavior was not due to ethanol concentration, killer toxins production or competition for assimilable nitrogenous compounds between both yeasts. Despite the consistent production of secondary products by single culture of K. apiculata, an increase of these compounds was not observed in mixed culture. These results contribute to a better understanding of the behavior of non-Saccharomyces yeasts and their potential application in the wine industry.  相似文献   

5.
Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way.  相似文献   

6.
The effect of different organic nitrogen compounds on the production of rifamycin SV by Amycolatopsis mediterranei MV35R and their optimum concentrations have been described. Results obtained indicate that rifamycin SV production increased from 4020 mg l-1 to 4575 mg l-1 when organic nitrogen compound uracil was added at 0.2% (w/v) concentration to the fermentation medium by A. mediterranei MV35R. The rifamycin SV yield was enhanced by 505 mg l-1 using uracil (2 g l-1) when compared with barbital.  相似文献   

7.
AIMS: The effect of oxygen on the survival of Torulaspora delbrueckii and Kluyveromyces thermotolerans during mixed culture fermentations in grape juice with Saccharomyces cerevisiae was investigated. METHODS AND RESULTS: Fermentations were carried out in two simple fermentation systems differing in the availability of oxygen. At low available oxygen conditions, T. delbrueckii and K. thermotolerans began to die off after two days of mixed culture fermentation. In filtrates from 2-day-old mixed cultures, single cultures of T. delbrueckii and K. thermotolerans survived and actively produced ethanol to concentrations of approx. 65 and 70 g l-1, respectively, at low available oxygen conditions. Oxygen clearly increased the survival time and decreased the death rate of T. delbrueckii and K. thermotolerans in mixed cultures, whereas it did not affect the growth and survival of S. cerevisiae. CONCLUSION: Our results show that the deaths of T. delbrueckii and K. thermotolerans in mixed cultures at low available oxygen conditions are not due to toxic metabolites produced by the yeasts but rather to the lack of oxygen. Furthermore, they indicate that T. delbrueckii and K. thermotolerans are less tolerant to low available oxygen conditions than S. cerevisiae. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reveals new knowledge on the mechanisms underlying the succession of yeasts during wine fermentations. This knowledge may be of importance when creating defined, mixed starter cultures for the controlled production of wines with a wide range of flavour compositions.  相似文献   

8.
AIMS: To assess the potential of sodium bicarbonate and ammonium molybdate as additives in enhancing the biocontrol efficacy of Rhodotorula glutinis and Cryptococcus laurentii against blue mould in jujube fruits. METHODS AND RESULTS: Two yeasts at a concentration of 107 CFU ml-1, in combination with 238 mmol l-1 sodium bicarbonate or 15 mmol l-1 ammonium molybdate, showed a significant inhibition effect on blue mould of jujube fruits stored at 20 degrees C for 5 days. The colonizing ability of the yeasts in wounded sites was significantly decreased in the presence of ammonium molybdate. CONCLUSIONS: Combining R. glutinis or C. laurentii with sodium bicarbonate or ammonium molybdate provided a more effective control of postharvest disease than using the antagonistic yeasts or the chemicals alone. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of sodium bicarbonate or ammonium molybdate reduced the number of antagonists required to efficiently control disease of postharvest fruits, which could result in the reduction of costs.  相似文献   

9.
AIMS: The objectives of this work were to develop a selective and/or differential medium able to efficiently recover Dekkera/Brettanomyces sp. from wine-related environments and to determine the relationship between these yeasts and the 4-ethylphenol content in a wide range of wines. METHODS AND RESULTS: The selectivity of the developed medium was provided by the addition of ethanol, as single carbon source, and cycloheximide. The inclusion of bromocresol green evidenced acid-producing strains. The inclusion of p-coumaric acid, substrate for the production of 4-ethylphenol, enabled the differentiation by smell of Dekkera/Brettanomyces sp. from all other yeast species growing in the medium. The medium was used either by plating after membrane filtration or by the Most Probable Number (MPN) technique. In 29 white and 88 red randomly collected wines, these yeasts were found only in red wines at levels up to 2500 MPN ml-1, but constituted less than 1% of the total microbial flora. In red wines, 84% showed detectable amounts of 4-ethylphenol up to 4430 microg l-1 while 28% of the white wines showed detectable levels up to 403 microg l-1. CONCLUSION: The use of the medium proposed in this work evidenced the presence of low relative populations of Dekkera/Brettanomyces sp. even in wines contaminated by fast-growing yeasts and moulds. SIGNIFICANCE AND IMPACT OF THE STUDY: Further ecological studies on Dekkera/Brettanomyces sp. should take into account the use of highly specific culture media in order to establish their true occurrence in nature.  相似文献   

10.
AIMS: The objective of this study was to investigate what types of enzymes are being produced by non-Saccharomyces yeasts isolated from grapes in South Africa vineyards and clarified grape juice. These enzyme profiles could pave the way for attributing specific effects in wine to some of these enzymes produced by so-called wild yeasts associated with grape must. METHODS AND RESULTS: In this study 245 yeast isolates, belonging to the genera Kloeckera, Candida, Debaryomyces, Rhodotorula, Pichia, Zygosaccharomyces, Hanseniaspora and Kluyveromyces were screened for the production of extracellular pectinases, proteases beta-glucanases, lichenases, beta-glucosidases, cellulases, xylanases, amylases and sulphite reductase activity. These yeasts, representing 21 species, were previously isolated from grapes and clarified grape juice. The production of all extracellular hydrolytic enzymes screened for was observed except beta-glucosidase activity. The amount and range of enzymes produced varied with different isolates of the same species. CONCLUSION: This study clearly revealed the potential of non-Saccharomyces wine yeasts to produce a wide range of useful extracellular enzymes during the initial phase of wine fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: Enzymes produced by indigenous yeasts associated with grapes and juice might be harnessed to catalyse desired biotransformations during wine fermentation.  相似文献   

11.
The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from "poor-sugar" environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae.  相似文献   

12.
Trehalose and glycogen, which can represent up to 30% of wine yeasts, was evaluated by different methods in (i) yeasts during fermentation of musts (200 g sugar l–1) and (ii) active dry yeasts. Fermentation trials demonstrated the potential value of monitoring changes in trehalose concentration during the rehydration step so that the performance of the yeasts can be evaluated.  相似文献   

13.
A total of 78 strains of non-Saccharomyces yeasts were isolated: 30 strains of Kloeckera apiculata, 20 of Candida stellata, 8 of Candida valida and 20 of Zygosaccharomyces fermentati. The diversity of yeast species and strains was monitored by determining the formation of secondary products of fermentation, such as acetaldehyde, ethyl acetate and higher alcohols. Within each species, the strains were distinguishable in phenotypes through the production of different amounts of by-products. In particular, a great variability was found in C. stellata, where six different phenotypes were identified by means of the production of acetaldehyde, ethyl acetate, isobutanol and isoamyl alcohol. At different stages of the spontaneous fermentation different phenotypes of the non-Saccharomyces yeasts were represented, characterized by consistent differences in some by-products involved in the wine bouquet, such as acetaldehyde.  相似文献   

14.
以诱变耐低温果酒酵母菌种YU2.28和产香酵母S15.3为发酵菌株,进行了葡萄酒发酵条件优化的试验研究.探讨了菌种生长温度、通氧量等因素,通过对菌种的生长情况和发酵醪液中总酯含量的变化分析,确定了自选酵母酿制葡萄酒的最佳技术参数,并对优化条件下发酵得到的葡萄酒进行GC/MS分析.结果显示:YU2.28和S15.3以1:3比例的混合发酵,接种量3%,调节醪液pH值为4.0,SO2添加量40 mg/L,发酵温度20℃,主发酵6 d内控制以230r/min的摇床转速进行摇瓶发酵,并进行9 h(每天1.5 h)供氧处理,后发酵30 d,酿造出的葡萄酒品质较佳,具有酒体丰盈,酒液澄清透亮,香气醇和的特征.成品酒香气成分共检测出醇类9种,酯类8种,酸类6种和少量的醛类、酮类等成分.  相似文献   

15.
16.
A rapid screening method for the evaluation of the major fermentation products of Saccharomyces wine yeasts was developed using Fourier transform infrared spectroscopy and principal component factor analysis. Calibration equations for the quantification of volatile acidity, glycerol, ethanol, reducing sugar and glucose concentrations in fermented Chenin blanc and synthetic musts were derived from the Fourier transform infrared spectra of small-scale fermentations. The accuracy of quantification of volatile acidity in both Chenin blanc and synthetic must was excellent, and the standard error of prediction was 0.07 g l(-1) and 0.08 g l(-1), respectively. The respective standard error of prediction in Chenin blanc and synthetic musts for ethanol was 0.32% v/v and 0.31% v/v, for glycerol was 0.38 g l(-1) and 0.32 g l(-1), for reducing sugar in Chenin blanc must was 0.56 g l(-1) and for glucose in synthetic must was 0.39 g l(-1). These values were in agreement with the accuracy obtained by the respective reference methods used for the quantification of the components. The screening method was applied to quantify the fermentation products of glycerol-overproducing hybrid yeasts and commercial wine yeasts. Principal component factor analysis of the fermentation data facilitated an overall comparison of the fermentation profiles (in terms of the components tested) of the strains. The potential of Fourier transform infrared spectroscopy as a tool to rapidly screen the fermentative properties of wine yeasts and to speed up the evaluation processes in the initial stages of yeast strain development programs is shown.  相似文献   

17.
The multi-yeast strain composition of wine fermentations has been well established. However, the effect of multiple strains of Saccharomyces spp. on wine flavour is unknown. Here, we demonstrate that multiple strains of Saccharomyces grown together in grape juice can affect the profile of aroma compounds that accumulate during fermentation. A metabolic footprint of each yeast in monoculture, mixed cultures or blended wines was derived by gas chromatography - mass spectrometry measurement of volatiles accumulated during fermentation. The resultant ion spectrograms were transformed and compared by principal-component analysis. The principal-component analysis showed that the profiles of compounds present in wines made by mixed-culture fermentation were different from those where yeasts were grown in monoculture fermentation, and these differences could not be produced by blending wines. Blending of monoculture wines to mimic the population composition of mixed-culture wines showed that yeast metabolic interactions could account for these differences. Additionally, the yeast strain contribution of volatiles to a mixed fermentation cannot be predicted by the population of that yeast. This study provides a novel way to measure the population status of wine fermentations by metabolic footprinting.  相似文献   

18.
Aims: A research was undertaken to explore the possibility to use Biolog system of microbial metabolic characterization for the monitoring of yeast population evolution during alcoholic fermentation for wine production. Methods and Results: An application of Biolog system was employed for the characterization of yeasts of oenological interest, in pure cultures and mixed consortia, in various cell concentrations. The system’s capacity to discriminate among different cell concentrations of the same yeast strain was ascertained, along with the capacity to discriminate between mixed and pure populations. Conclusions: The tested application of Biolog system resulted suitable for a quick recognition (24 h) of the presence of starter cultures within mixed populations of autochthonous yeasts. Such discrimination was confirmed with the one resulting from molecular techniques. Significance and Impact of the Study: The study suggests the possibility to employ Biolog system for an early monitoring of yeast evolution in modern wine‐making fermentations, where specialized yeasts are more and more frequently used as starters and their ability to overcome autochthonous yeast populations is crucial.  相似文献   

19.
A dry white wine with an alcoholic content of 10 to 14% v/v was produced by yeast fermentation of slurried ground soybeans, soybean milk and whey from tofu production. Wines from whey and soybean milk were judged by a 20 member taste panel to be acceptable and comparable to a commercial chablis control. Chemical analysis indicated that the high fat and protein contents of soybeans do not cause a problem in the production of wines from soybeans as the lipids and proteins are precipitated by the acid and alcohol formed during the fermentation. The less recovered following fermentation were dehydrated and ground to a flour having an enriched protein content due to the yeasts and an improved flavor resulting from the yeast fermentation.  相似文献   

20.
The presence of recessive growth-retarding alleles can reduce the fitness of industrial wine yeasts. In nature, these alleles are supposed to be eliminated through "genome renewal". We emulated this process in the laboratory to increase the fermentation vigor of wine yeasts. The procedure is simply to sporulate the yeast strains and select new homozygous single-spore descendants. Most of the yeasts achieve a faster onset of fermentation when recessive deleterious genes are eliminated. The increase of the degree of homozygosity has no relation, either direct or inverse, with the fermentation vigor of the yeasts or with the quality of the resulting wine. However, in some strains in which recessive growth-retarding alleles have been eliminated, the fermentation vigor and the quality of the wine were found to be improved simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号