首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial isolates from two environments, an integrated-farming pond in the university and palm-oil mill effluent (POME) ponds at a local palm-oil-processing factory, were screened for polyhydroxyalkanoates (PHAs). Initially Sudan Black B staining was performed to detect lipid cellular inclusions. Lipid-positive isolates were then grown in a nitrogen-limiting medium containing 2% (w/v) glucose to promote accumulation of PHA before the subsequent Nile Blue A staining. The PHA extracted from positive isolates was confirmed by nuclear magnetic resonance (NMR) spectroscopy. The proportion of PHA-positive bacterial isolates was higher in the POME ponds compared to the integrated-farming pond.  相似文献   

2.
Samples from various natural environments in Peninsular Malaysia were screened for microorganisms that are capable of producing poly(3-hydroxybutyrate-co-4-hydroxybutyrate). A total of 663 isolates were isolated and 119 out of these isolates were identified as possible PHA producers based on Nile red staining methods. All these potential producers emitted pink fluorescence when grown on solid mineral salts medium (MSM) containing Nile red and exposed to UV light. The isolates obtained in this study were cultivated in MSM containing γ-butyrolactone as the carbon source. Gas chromatography (GC) analysis confirmed that 95 out of the 119 isolates were PHA producers. Among the 95 positive isolates, 77 isolates produced only P(3HB) homopolymer and 18 isolates produced PHA containing 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) monomers. Of these 18 isolates, USMAA1020 was screened as the best P(3HB-co-4HB) producer based on GC analysis. For further confirmation, PHA was extracted from the isolate and analyzed by GC as well as nuclear magnetic resonance (NMR). Results from both analyses confirmed that this isolate was capable of producing PHA containing 3HB and 4HB. Based on, biochemical characterization, 16S rRNA sequencing, DNA base composition, cellular fatty acids analysis and DNA–DNA hybridization, it is clearly indicated that this isolate belongs to the genus Cupriavidus. Poly(3HB-co-4HB) was synthesized by this bacterium in one-stage, two-stage and three-stage cultivation using γ-butyrolactone as the carbon source. The highest 4HB composition of 82 mol% was obtained through three-stage cultivation.  相似文献   

3.
AIMS: Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. Methods and Results: The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. CONCLUSIONS: Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. Significance and Impact of the Study: This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source.  相似文献   

4.
Separation of acetic acid from palm oil mill effluent (POME) to increase its concentration by an anion exchange resin was examined as a preliminary study for its recovery from POME that had been anaerobically treated by sludge from a palm oil mill. This paper concerns the acetic acid thus separated for producing bacterial polyhydroxyalkanoate (PHA) by Alcaligenes eutrophus. It was found that sludge particles in POME strongly inhibited the adsorption of acetic acid on the anion exchange resin. Removing the sludge particles from the POME facilitated the separation of acetic acid from the POME efficiently. The concentrated acetic acid thus obtained from anaerobically treated POME could be used as a substrate in the fed-batch production of polyhydroxyalkanoate by Alcaligenes eutrophus.  相似文献   

5.
Loo CY  Lee WH  Tsuge T  Doi Y  Sudesh K 《Biotechnology letters》2005,27(18):1405-1410
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (Mn) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6–3.9.  相似文献   

6.
Microbially induced carbonate precipitation (MICP) is a process that hydrolysis urea by microbial urease to fill the pore spaces of soil with induced calcium carbonate (CaCO3) precipitates, which eventually results in improved or solidified soil. This research explored the possibility of using dairy manure pellets (DMP) and palm oil mill effluent (POME) as alternative nutrient sources for Sporosarcina pasteurii cultivation and CaCO3 bioprecipitation. Different concentrations (20–80 g l−1) of DMP and POME were used to propagate the cells of S. pasteurii under laboratory conditions. The measured CaCO3 contents for MICP soil specimens that were treated with bacterial cultures grown in DMP medium (60%, w/v) was 15·30 ± 0·04 g ml−1 and POME medium (40%, v/v) was 15·49 ± 0·05 g ml−1 after 21 days curing. The scanning electron microscopy showed that soil treated with DMP had rhombohedral structure-like crystals with smooth surfaces, whilst that of POME entailed ring-like cubical formation with rough surfaces Electron dispersive X-ray analysis was able to identify a high mass percentage of chemical element compositions (Ca, C and O), whilst spectrum from Fourier-transform infrared spectroscopy confirmed the vibration peak intensities for CaCO3. Atomic force microscopy further showed clear topographical differences on the crystal surface structures that were formed around the MICP treated soil samples. These nutrient sources (DMP and POME) showed encouraging potential cultivation mediums to address high costs related to bacterial cultivation and biocementation treatment.  相似文献   

7.
Cellulolytic fungi, 34 strains, were isolated from samples taken from palm oil mill residues and effluent, and high cellulase producers selected in comparison with nine known reference strains. Although 13 isolates showed good filter paper distintegration within 14 days, only eight isolates exhibited clearing zones around their colonies on carboxymethylcellulose (CMC) agar medium. Quantitative cellulase activity measurements, using CMC as carbon source, selected three of the eight isolates as potential cellulase producers. Using dried palm oil mill condensate as carbon source, only one of the isolates (F 11) showed similar results on both carbon sources. During media optimization for CMCase production, a four-fold increase from 0.058 to 0.275 U/ml was obtained using a medium, containing 0.1% (v/v) Tween 80 0.02% (w/v) NH4NO3, 0.025% (w/v) proteose-peptone and 0.1% (w/v) CMC dissolved in undiluted condensate from the sterilization of oil palm bunches, with an initial pH of 5.5.  相似文献   

8.
Aims: The purpose of this study was to isolate new and potentially better polyhydroxyalkanoate (PHA)‐producing bacteria, with a view to obtaining high yields from inexpensive substrates like glycerol, a major by‐product of the biodiesel process. Methods and Results: Eleven new plant original isolates of the genus Massilia, a poorly studied lineage within the Betaproteobacteria, were isolated and characterized. Two isolates, 2C4 and 4D3c, could not be assigned to a validated Massilia species and probably represent new species. Six isolates were found to produce poly‐3‐hydroxybutyrate (P3HB) when cultured with glucose or glycerol as carbon source. Isolate 4D6 accumulated up to 50 wt% of cell mass as polyhydroxybutyrate (PHB) when grown on glycerol. Conclusions: The phyllosphere may be a good source of bacteria unrelated or weakly related to human/animal pathogens for screening for new PHA producers for industrial application. Isolate 4D6 was capable of accumulating particularly high levels of PHB from glycerol. Significance and Impact of the Study: With the increase in biodiesel production, which generates increasing amounts of glycerol as a by‐product, there is a major interest in exploiting this compound as feedstock for the synthesis of interesting products, like biopolymers, such as PHA. The new Massilia sp. 4D6 isolate described in this study may be a useful candidate as a cell factory for the industrial production of PHA from glycerol.  相似文献   

9.
Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return.  相似文献   

10.
Schizosaccharomyces pombe isolated from palm wine was evaluated for single-cell-protein production using hydrocarbon feedstocks. The isolate was adapted for hydrocarbon utilization by continuous enrichment in a mineral-salts medium containing a mixture of two petroleum fractions, kerosene and diesel. The isolate grew well on the mineral-salts medium containing either kerosene or diesel as sole carbon and energy source. Hydrocarbon degradation using the isolate was demonstrated by gas chromatographic analysis. Optimum growth ofS. pombe was obtained at hydrocarbon feedstock concentrations of 1.5%. The optimum temperature and pH for growth of the yeast were found to be 30 °C and 5.5 respectively. Ammonium sulfate was found to be the most suitable nitrogen source. Total protein content of the hydrocarbon-grown yeast, analyzed by the Kjeldahl method, was high. The yeast was capable of synthesizing all the amino acids tested. These results show the feasibility of usingS. pombe grown on hydrocarbon feedstocks to produce single-cell protein.  相似文献   

11.
Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)   总被引:12,自引:0,他引:12  
Large scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by Aeromonas hydrophila 4AK4 was examined in a 20,000 l fermentor. Cells were first grown using glucose as a carbon source, and polyhydroxyalkanoate (PHA) biosynthesis was triggered by the addition of lauric acid under conditions of limited nitrogen or phosphorus. When cells first grown in a medium containing 50 g glucose l(-1) were further cultivated after the addition of 50 g lauric acid l(-1) under phosphorus limitation, a final cell concentration, PHA concentration and PHA content of 50 g l(-1), 25 g l(-1), and 50 wt%, respectively, were obtained in 46 h, equivalent to PHA productivity of 0.54 g l(-1)t h(-1). The copolymer produced was found to be a random copolymer, and the 3HHx fraction was 11 mol%.  相似文献   

12.
Polyhydroxyalkanoate (PHA) is a family of biopolymers produced by some bacteria and is accumulated intracellularly as carbon and energy storage material. Fifteen PHA-producing bacterial strains were identified from bacteria isolated from Antarctic soils collected around Casey Station (66°17'S, 110°32'E) and Signy Island (60°45'S, 45°36'W). Screening for PHA production was carried out by incubating the isolates in PHA production medium supplemented with 0.5% (w/v) sodium octanoate or glucose. 16S rRNA gene sequence analysis revealed that the isolated PHA-producing strains were mainly Pseudomonas spp. and a few were Janthinobacterium spp. All the isolated Pseudomonas strains were able to produce medium-chain-length (mcl) PHA using fatty acids as carbon source, while some could also produce mcl-PHA by using glucose. The Janthinobacterium strains could only utilize glucose to produce polyhydroxybutyrate (PHB). A Pseudomonas isolate, UMAB-40, accumulated PHA up to 48% cell dry mass when utilizing fatty acids as carbon source. This high accumulation occurred at between 5°C and 20°C, then decreased with increasing temperatures. Highly unsaturated mcl-PHA was produced by UMAB-40 from glucose. Such characteristics may be associated with the ability of UMAB-40 to survive in the cold.  相似文献   

13.
A methane-oxidizing bacterium was isolated from the effluent of manure and its molecular and biochemical properties were characterized. The isolate was aerobic, Gram-negative, and non-motile. The organism had a type I intracytoplasmic membrane structure and granular inclusion bodies. The outer cell wall surface (S-layers) was tightly packed with cup-shaped structures. Colonies were light yellow on nitrate mineral salt agar medium. In addition, the organism was catalase and oxidase positive. The isolate used the ribulose monophosphate (RuMP) pathway for carbon assimilation, and was able to utilize methane and methanol as a sole carbon and energy source, however, it could not utilize any other organic compounds that were tested. The cells grew well in a mixture of methane and air (methane:air=1:1, v/v) in a compulsory circulation diffusion system, and when grown under those conditions, the optimum pH was approximately 7.0 and the optimal temperature was 30 degrees. In addition, the specific growth rate and generation time were 0.13 per h and 5.43 h, respectively, when grown under the optimum conditions. The major ubiquinone was Q-8, and the G+C mol% of the DNA was 55.3. Phylogenetic analyses based on the 16S rRNA gene sequence comparisons showed that this bacterium belongs to a group of type I methanotrophs, and that it is most closely related to Methylomicrobium, with a sequence similarity of 99%. Therefore, the isolate was named Methylomicrobium sp. HG-1.  相似文献   

14.
The biochemical profiles, presence of capsule, outer membrane protein profiles and serological interactions of isolates of Streptococcus iniae obtained from different geographical and fish host origins were examined. The isolates had very similar biochemical profiles using API 20 Strep but varied as to whether they were arginine dihydrolase-negative, -positive or -intermediate (AD-ve, AD+ve, AD+/-ve, respectively). Representatives of each AD type were compared in subsequent experiments. All types possessed a polysaccharide capsule. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of outer membrane proteins or whole cells revealed no difference in banding patterns between isolates. All isolates were resistant to trout normal and specific immune serum and grew well in the presence of added fresh normal serum. Serological analyses of the isolates revealed antigenic differences. Trout antiserum against the AD+ve isolate did not agglutinate the AD-ve or AD+/-ve isolates, while antisera against the latter 2 types showed low agglutinating activity with all 3 isolates. When whole live cells of AD-ve and AD+ve isolates were dot-blotted, antiserum to the AD+ve isolate did not stain the AD-ve isolate, but antiserum to the AD-ve isolate stained both AD types. However, if the cells were pre-treated with Proteinase K (to remove surface-exposed protein antigens), the AD+ve isolate was stained only by its homologous antiserum. These results suggest that while certain protein antigens of the different AD type strains are immunologically cross-reactive, the capsular antigens appear to be AD type-specific. Furthermore, the results suggest that the cross-reactive antigens on the AD-ve isolate are effectively hidden by the strain-specific capsule, while they are partially exposed on the AD+ve isolate.  相似文献   

15.
Bacterial isolates from sludge samples collected at a local municipal sewage treatment plant were screened for bacteria producing polyhydroxyalkanoates (PHA). Initially Sudan black B staining was performed to detect lipid cellular inclusions. Lipid-positive isolates were then grown in a nitrogen limitation E2 medium containing 2% (w/v) glucose to promote accumulation of PHA before the subsequent staining with Nile blue A. The positive isolates were quantified initially with a u.v. spectrophotometer, for a very large number of isolates (105) and among them high PHA-producing isolates (15) were selected and were confirmed by gas chromatographic analysis. The GC analysis showed the polymers produced by 13 of the selected isolates to be polyhydroxybutyrate (PHB), and the remaining two isolates produced polyhydroxybutyrate-co-hydroxyvalerate (PHB-co-HV) copolymer. The proportion of the PHA-positive bacterial isolates showed variability in the number of PHA accumulators during various months. The correlation of PHB production with the cell dry weight (CDW) was found to be statistically significant. The metabolism of PHB in these selected 15 isolates was studied using the Nile blue A staining, which showed an initial increase in the fluorescence followed by a decline, on further incubation. All the selected 15 isolates were classified to genus level by studying their morphological and biochemical characteristics. There were seven Bacillus species, three Pseudomonas species, two Alcaligenes species, two Aeromonas species, and one Chromobacterium species.  相似文献   

16.
The synthesis of polyhydroxyalkanoates (PHA) by Pseudomonas putida PGA1, using saponified palm kernel oil (SPKO), was investigated. The PHA produced from SPKO was compared with those produced by the major free fatty acids found in the palm kernel oil. Owing to the absence of lipase activity in P.␣putida, palm kernel oil did not support cell growth. However, SPKO could support cell growth and produced relatively high yield of both dry cells and PHA. The polyester produced was similar in properties to those derived from lauric (C12:0) and myristic (C14:0) acids, while oleic acid (C18:1) gave rise to PHA that was sticky and of broader molecular mass distribution. Nuclear magnetic resonance and gas chromatography showed that these PHA were copolymers consisting mainly of n-alkanoate monomers ranging from C6 to C14, with C8 as the predominant component. PHA derived from SPKO and oleic acid also contained a small amount of unsaturated monomers. Received: 25 March 1996 / Received last revision: 30 September 1996 / Accepted: 18 October 1996  相似文献   

17.
To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of PHAMCL from waste vegetable oil. The proportion of 3- hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil.  相似文献   

18.
Bacillus pumilus strain NMSN-1d isolated from polyurethane-contaminated water was found to grow in high salt concentration (NaCl 10%, w/v) and degrade Impranil-DLN, water-dispersible polyurethane. The genetic relatedness of the isolate has been established by standard molecular biological techniques and the enzyme(s) involved in polyurethane degradation were also studied. A total of nine bacterial strains were isolated from polyurethane-polluted sites and characterized by conventional, microbiological and biochemical methods. These isolates were subjected to 16S ribosomal RNA gene amplification by PCR using specific primers. The genetic relatedness of the isolates was also ascertained by ribotyping and BLAST analysis of the 16S ribosomal RNA gene sequences. The bacterial isolates were grown in yeast extract-salts minimal broth medium supplemented with water-dispersible polyurethane (Impranil DLN) as a sole source of carbon. The promising isolate utilizing polyurethane and producing lipase was identified as Bacillus pumilus NMSN-1d. The polyurethane degradation has been studied in polyurethane-Rhodamine-B and Luria-Bertani-polyurethane plate assays. The activity of hydrolytic enzymes such as lipase and esterase was confirmed on 2xYT-olive oil and tributyrin-Tween 20 plate assay. The newly isolated Bacillus pumilus appears promising in the management of polyurethane waste and in production of industrially important enzymes.  相似文献   

19.
Five toxigenic isolates of Fusarium species were tested for the production of zearalenone, moniliformin and trichothecenes (deoxynivalenol, 15-acetyldeoxynivalenol, T-2, HT-2 and neosolaniol) when grown on solid sugar beet slices in the laboratory for thirty days. The isolates were also grown on a solid rice medium for comparison. High zearalenone and trichothecene-producing isolates originally obtained from corn and corn-based feedstuff were compared with isolates obtained from sugar beets. One moniliformin-producing isolate from wheat was included in the study. With the exception of moniliformin, all toxins were produced on both substrates; however, the rice medium yielded the greater concentrations except for HT-2 which was produced on sugar beets in equal or greater concentrations. Zearalenone production on rice reached 729–1943 gmg/g whereas on sugar beet it reached 72–193 gmg/g. The moniliformin-producing isolate grew well on both substrates; however, moniliformin was produced only on the rice substrate. This study demonstrates for the first time that Fusarium species can produce both zearalenone and the trichothecenes on a sugar beet substrate.  相似文献   

20.
The PHA-degrading isolate, strain P37C, was enriched from residential compost for its ability to hydrolyze the medium chain length PHA, poly(beta-hydroxyoctanoate) (PHO). It was subsequently found to grow on a wide range of PHAs, including both short chain length and medium chain length PHAs. The isolate was identified as belonging to the genus Comamonas. Strain P37C formed clear zones on poly(beta-hydroxybutyrate) (PHB), (PHO) and poly(beta-hydroxyphenylvalerate) (PHPV) overlay plates. PHA clear zone tubes were prepared using seven different kinds of PHAs, ranging from PHB with four-carbon repeating units, to poly(beta-hydroxyoctanoate-co-beta-hydroxyundecanoate) (PHOU) with 8- and 11-carbon repeating units. There was a direct correlation between PHA side chain length and rate of hydrolysis of the PHAs. A series of PHOUs containing varying percentages of unsaturated bonds were used to make a series of epoxidized PHOUs (PHOEs) with varying percentages of epoxy functions. Results of clear zone tube assays showed that these functionalized PHAs were all biodegradable by strain P37C, and there was no apparent correlation between rate of biodegradation and the proportion of functional groups in the PHAs. Biodegradability of these PHAs was verified using respirometry and enzyme assays. Cell-free supernatants containing activity toward PHAs were prepared, and strain P37C was shown to synthesize at least two distinct PHA depolymerases for the hydrolysis of SCL and MCL PHAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号