首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sit-to-Stand (STS) is an activity most people perform numerous times daily. Standing up deals with the transition from two stabilized postures, namely seated to standing, with movement of all body segments except the feet. During the STS the body's Center of Gravity (COG) is moved upward from a sitting position to a standing position without losing balance and requiring a good coordination of many muscles. Three main phases of the STS movement can be recognized. One begins to stand up by inclining the upper body forward, which moves body mass toward the feet in order to maintain balance after lift-off. Prior to leaving the chair, hip and knee extensor muscles are activated to provide antigravity support for these joints, this action is commonly referred to as "weight shift". Finally; after leaving the chair, the leg and trunk joints are straightened to achieve upright stance. The STS task can be considered of major importance for impaired and elderly people to achieve minimal mo- bility and independence. In this paper we detail a procedure for the design of assisting devices to be used for the STS. In par- ticular, an experimental procedure is described firstly to track and record point trajectories and the orientation of the trunk during the STS. This analysis is then used to get information for the design of assisting devices. A proposal and simulation results are presented for a novel mechatronic system. In particular, for the case under study experimental tests are used to drive the actua- tion system for the reported simulation. A functional mechatronic scheme is then proposed to control the device during its operation.  相似文献   

2.
The purpose of this study was the development of a non-linear double inverted constrained pendulum model for the analysis of the movement of sit-to-stand (STS) transition. Ten able-bodied subjects perform five trials in their natural speed. Kinematics, kinetics as well as body worn accelerometer data were collected during the STS task using optoelectronic motion capture, force plate and inertial measurement unit, respectively. The conjugate momentum for the whole body which includes linear and angular motion correlates well with the accelerometric surface spanned by the accelerometer data. The partitioning of the conjugate momentum indicates a clear coordination between upper and lower limb after seat-off period. Moreover, the normalization procedure indicates a clear minimal and somehow invariant threshold value of the conjugate momentum to approximately 0.3 (body mass×body length) to perform the sit-to-stand for able-bodied subject. This threshold correlates well with the data obtained from accelerometeric index. The proposed accelerometric index is relevant to assess STS performance and to detect failed STS in clinics and outside a laboratory for patients with reduced mobility.  相似文献   

3.
BackgroundExcess body mass alters gait biomechanics in a distribution-specific manner. The effects of adding mass centrally or peripherally on biomechanics during sitting and rising from a chair are unknown.MethodsMotion analysis and lower extremity EMG were measured for fifteen healthy, normal weight subjects during sit-to-stand (SitTS) and stand-to-sit (StandTS) from a chair under unloaded (UN), centrally loaded (CL), and peripherally loaded (PL) conditions.ResultsCompared to UN, PL significantly increased support width (SitTS and StandTS), increased peak trunk flexion velocity (SitTS), and trended to increase peak trunk flexion angle (SitTS). During StandTS, CL significantly reduced peak trunk flexion compared to UN and PL. EMG activity of the semitendinosus, vastus lateralis and/or medialis was significantly increased in CL compared to UN during SitTS and StandTS.ConclusionsAdding mass centrally or peripherally induces contrasting biomechanical strategies to successfully sit or rise from a chair. CL limits trunk flexion and increases knee extensor muscle activity whereas; PL increases support width and trunk flexion, thus preventing increased EMG activity.  相似文献   

4.
Tibiofemoral loading is very important in cartilage degeneration as well as in component survivorship after total knee arthroplasty. We have previously reported the axial knee forces in vivo. In this study, a second-generation force-sensing device that measured all six components of tibial forces was implanted in a 74-kg, 83-year-old male. Video motion analysis, ground reaction forces, and knee forces were measured during walking, stair climbing, chair-rise, and squat activities. Peak total force was 2.3 times body weight (BW) during walking, 2.5 x BW during chair rise, 3.0 x BW during stair climbing, and 2.1 x BW during squatting. Peak anterior shear force at the tibial tray was 0.30 x BW during walking, 0.17 x BW during chair rise, 0.26 x BW during stair climbing, and 0.15 x BW during squatting. Peak flexion moment at the tray was 1.9% BW x Ht (percentage of body weight multiplied by height) for chair-rise activity and 1.7% BW x Ht for squat activity. Peak adduction moment at the tray was -1.1% BW x Ht during chair-rise, -1.3% BW x Ht during squatting. External knee flexion and adduction moments were substantially greater than flexion and adduction moments at the tray. The axial component of forces predominated especially during the stance phase of walking. Shear forces and moments at the tray were very modest compared to total knee forces. These findings indicate that the soft tissues around the knee absorbed most of the external shear forces. Our results highlight the importance of direct measurements of knee forces.  相似文献   

5.
High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.  相似文献   

6.
High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.  相似文献   

7.
The aim of this study was to explore the electromyographic, kinetic and kinematic patterns during a partially restricted sit-to-stand task in subjects with and without Parkinson’s disease (PD). If the trunk is partially restricted, different behavior of torques and muscle activities could be found and it can serve as a reference of the deterioration in the motor performance of subjects with PD. Fifteen subjects participated in this study and electromyography (EMG) activity of the tibialis anterior (TA), soleus (SO), vastus medialis oblique (VMO), biceps femoris (BF) and erector spinae (ES) were recorded and biomechanical variables were calculated during four phases of the movement. Subjects with PD showed more flexion at the ankle, knee and hip joints and increased knee and hip joint torques in comparison to healthy subjects in the final position. However, these joint torques can be explained by the differences in kinematic data. Also, the hip, knee and ankle joint torques were not different in the acceleration phase of movement. The use of a partially restricted sit-to-stand task in PD subjects with moderate involvement leads to the generation of joint torques similar to healthy subjects. This may have important implications for rehabilitation training in PD subjects.  相似文献   

8.

Background  

A sit-to-stand (STS) movement requires muscle strength higher than that of other daily activities. There are many elderly people, who experience difficulty when standing up from a chair. The muscle strength required (or the load on the joints) during a STS task is determined by the kinematics (movement pattern). The purpose of this study was to evaluate the kinematics and resultant joint moments of people standing up from a chair in order to determine the minimum peak joint moments required for a STS task.  相似文献   

9.
The purpose of this study was to clarify criteria that can predict trajectories during the sit-to-stand movement. In particular, the minimum jerk and minimum torque-change models were examined. Three patterns of sit-to-stand movement from a chair, i.e., upright, natural, and leaning forward, were measured in five young participants using a 3-D motion analysis device (200 Hz). The trajectory of the center of mass and its smoothness were examined, and the optimal trajectories predicted by both models were evaluated. Trajectories of the center of mass predicted by the minimum torque-change model, rather than the minimum jerk model, resembled the measured movements in all rising movement patterns. The upright pattern required greater extension torque of the knee and ankle joints at the instant of seat-off. The leaning-forward pattern required greater extension hip torque and higher movement cost than the natural and upright patterns. These results indicate that the natural sit-to-stand movement might be a result of dynamic optimization.  相似文献   

10.
The purpose of this study was to establish the region of stability of balance control using the center of mass (COM) acceleration and to characterize age-related differences during sit-to-stand (STS) movement. Whole body motion data were collected from 10 young and 10 elderly subjects while performing STS at their self-selected manners. In addition, young subjects were asked to perform another block of trials with their trunk purposely bent forward prior to seat-off. With the use of a single-link-plus-foot inverted pendulum model, boundaries for the region of stability were determined based on the COM position at seat-off and its instantaneous velocity or its peak acceleration (ROSv or ROSa, respectively). No significant group differences were detected in COM velocities at seat-off. However, peak COM accelerations differed significantly between groups and conditions. This suggested that even though a similar COM momentum was observed at seat-off, this momentum was controlled differently prior to seat-off. Young and elderly subjects utilized similar strategies but with different COM acceleration profiles to perform STS. Furthermore, data from an elderly subject who complained of difficulty in STS during the experiment were located outside the forward boundary of the ROSa, demonstrating a potential use of ROSa to differentiate individuals with declined balance control ability. The ROSa could provide insights into how the COM is controlled prior to seat-off, which may allow us to better identify elderly individuals who are most likely at a risk for imbalance or falls.  相似文献   

11.
The purpose of this study was to reveal the minimum required muscle force for a sit-to-stand task. Combining experimental procedures and computational processing, movements of various sit-to-stand patterns were obtained. Muscle forces and activations during a movement were calculated with an inverse dynamics method and a static numerical optimization method. The required muscle force for each movement was calculated with peak muscle activation, muscle physiological cross sectional area and specific tension. The robustness of the results was quantitatively evaluated with sensitivity analyses. From the results, a distinct threshold was found for the total required muscle force of the hip and knee extensors. Specifically, two findings were revealed: (1) the total force of hip and knee extensors is appropriate as the index of minimum required muscle force for a sit-to-stand task and (2) the minimum required total force is within the range of 35.3-49.2 N/kg. A muscle is not mechanically independent from other muscles, since each muscle has some synergetic or antagonistic muscles. This means that the mechanical threshold of one muscle varies with the force exertion abilities of other muscles and cannot be evaluated independently. At the same time, some kinds of mechanical threshold necessarily exist in the sit-to-stand task, since a muscle force is an only force to drive the body and people cannot stand up from a chair without muscles. These indicate that the existence of the distinct threshold in the result of the total required muscle force is reasonable.  相似文献   

12.
This study deals with the quantitative assessment of exchanged forces and torques at the restraint point during whole body posture perturbation movements in long-term microgravity. The work was based on the results of a previous study focused on trunk bending protocol, which suggested that the minimization of the torques exchanged at the restraint point could be a strategy for movement planning in microgravity (J. Biomech. 36(11) (2003) 1691). Torques minimization would lead to the optimization of muscles activity, to the minimization of energy expenditure and, ultimately, to higher movement control capabilities. Here, we focus on leg lateral abduction from anchored stance. The analysis was based on inverse dynamic modelling, leading to the estimation of the total angular momentum at the supporting ankle joint. Results agree with those obtained for trunk bending movements and point out a consistent minimization of the torques exchanged at the restraint point in weightlessness. Given the kinematic features of the examined motor task, this strategy was interpreted as a way to master the rotational dynamic effects on the frontal plane produced by leg lateral abduction. This postural stabilizing effects was the result of a multi-segmental compensation strategy, consisting of the counter rotation of the supporting limb and trunk accompanying the leg raising. The observed consistency of movement-posture co-ordination patterns among lateral leg raising and trunk bending is put forward as a novel interpretative issue of the adaptation mechanisms of the motor system to sustained microgravity, especially if one considers the completely different kinematics of the centre of mass, which was observed in weightlessness for these two motor tasks.  相似文献   

13.
The asymmetrical weight-bearing distribution of individuals with hemiparesis rising from a chair might be used to produce similar muscular efforts at the lower limbs. The aim of this study was to determine if individuals with hemiparesis have symmetrical levels of effort at the knee during spontaneous sit-to-stand transfers. Nineteen subjects with hemiparesis and 16 healthy controls participated. Their weight-bearing (WB) distribution during sit-to-stand was assessed with a force platform setup while the knee effort distribution was quantified using electromyographic (EMG) data normalized to maximal EMG values then expressed relative to the sum of the bilateral efforts. The healthy individuals presented symmetrical weight-bearing and knee effort distributions during the sit-to-stand transfer. The participants with hemiparesis, classified in three subgroups based on knee extensors’ strength asymmetries (mild, moderate and severe), yielded different results. The mild group (n = 6) behaved like the controls, with almost symmetrical WB and knee efforts. The moderate group (n = 7) had similar WB and effort asymmetries while the severe group (n = 6) exhibited a WB distribution difference between sides but had almost symmetrical knee effort. These results for the severe group suggest that a control is exerted on the levels of effort when rising from a chair, which might be required when a certain threshold of effort is reached on the nonparetic side.  相似文献   

14.
It was recently shown that short-term changes in the whole body mass and associated changes in the vertical position of the center of mass (COM) modify anticipatory postural adjustments (APAs) [Li X, Aruin AS. The effect of short-term changes in the body mass on anticipatory postural adjustments. Exp Brain Res 2007;181:333–46]. In this study, we investigated whether changes in the body mass distribution and related changes in the anterior–posterior COM position affect APA generation. Fourteen subjects were instructed to catch a 2.2 kg load with their arms extended while standing with no additional weight or while carrying a 9.08 kg weight. Adding weight to a backpack, front pack or belly pocket was associated with an increase of the whole body mass, but it also involved changes in the anterior–posterior (A/P) and vertical positions of the COM. Electromyographic activity of leg and trunk muscles, body kinematics, and ground reaction forces were recorded and quantified within the typical time intervals of APAs. APAs were modified in conditions with changed body mass distribution: increased magnitude of anticipatory EMG activity in leg and trunk muscles, as well as co-activation of leg muscles and decreased anticipatory displacement of the COM in the vertical direction, were seen in conditions with increased body mass. Changes in the COM position induced in both A/P and vertical directions were associated with increased anticipatory EMG activity. In addition, they were linked to a co-activation of muscles at the ankle joints and significant changes in the center of pressure (COP) position. Modifications of the COM position induced in the A/P direction were related to increased anticipatory EMG activity in the leg and trunk muscles. At the same time, no significant differences in anticipatory EMG activity or displacement of COP were observed when changes of COM position were induced in the vertical direction. The study outcome suggests that the CNS uses different strategies while generating APAs in conditions with changes in the COM position induced in the anterior–posterior and vertical directions.  相似文献   

15.
The purpose of this study was to investigate the neuromuscular efficiency of women with knee osteoarthritis (OA) when performing a sit-to-stand movement and during maximum strength efforts. Twelve women with unilateral knee OA (age 60.33 ± 6.66 years, height 1.61 ± 0.05 m, mass 77.08 ± 9.2 kg) and 11 controls (age 56.54 ± 5.46 years, height 1.64 ± 0.05 m, mass 77.36 ± 13.34 kg) participated in this study. Subjects performed a sit-to-stand movement from a chair while position of center of pressure and knee angular speed were recorded. Furthermore, maximal isokinetic knee extension and flexion strength at 60°/s, 120°/s and 150°/s was measured. Surface, electromyography (EMG) from the biceps femoris (BF), vastus lateralis (VL) and vastus medialis (VM) was recorded during all tests. Analysis of variance (ANOVA) showed that during the sit-to-stand OA group demonstrated significantly lower knee angular speed (44.49 ± 9.61°/s vs. 71.68 ± 19.86°/s), a more posterior position of the center of pressure (39.20 ± 7.02% vs. 41.95 ± 2.49%) and a higher antagonist BF activation (57.13 ± 20.55% vs. 32.01 ± 19.5%) compared with controls (p < 0.05). Further, women with knee OA demonstrated a lower Moment-to-EMG ratio than controls in extension and eccentric flexion at 60°/s and 150°/s, while the opposite was found for concentric flexion at 60°/s (p < 0.05). Among other factors, the slower performance of the sit-to-stand movement in women with OA is due to a less efficient use of the knee extensor muscles (less force per unit of EMG) and, perhaps, a higher BF antagonist co-activation. This may lead subjects with OA to adopt a different movement strategy compared with controls.  相似文献   

16.
The aim of this study was to compare the effects of grab rail position, orientation, and number of hands used on the kinetics of assisted sit-to-stand transfers. Participants were 12 able-bodied older adults between the ages of 69 and 88 years. While each one performed the sit-to-stand transfer, a motion analysis system with 9 cameras recording at 60 Hz tracked the 3-D trajectories of retroreflective markers. Bilateral 37-D platform, grab rail, and seat force data were collected at 200 Hz and normalized to participant body weight. Four lateral conditions were tested: vertical, 45 degrees inclined, and horizontal with the hand placed at 150 mm and 400 mm forward of the seat front edge. Four anterior conditions were tested: vertical and horizontal orientations with the use of one hand and two hands. Posterior grab rail force increased with anterior assistance and with two-hand use compared to lateral assistance and single hand use, respectively. The selection of grab rail position and the number of hands incorporated during assistance also determined the symmetry of anteroposterior net joint forces, net joint moments, and joint powers. Grab rail orientation determined the height of the gripping hand which influenced the assistance strategy. Grab rail position, orientation, and the amount of upper body contribution influenced the assisted sit-to-stand transfer. These kinetic responses to grab rail location require careful consideration in order to optimize grab rail assistance during the sit-to-stand transfer.  相似文献   

17.
Weight-bearing tasks performed by humans consist of a series of phases with multiple objectives. Analysis of the relationship between control and dynamics during successive phases of the tasks is essential for improving performance without sustaining injury. Experimental evidence regarding foot landings suggests that the distribution of momentum among segments at contact influences stability during interaction with the landing surface. In this study, we hypothesized that modification of control in one subsystem, in our case shoulder torque, during the flight phase of an aerial task would enable the performer to maintain behavior of other subsystems (e.g.lower extremity kinematics) and initiate contact with momentum conditions consistent with successful task performance. To test this hypothesis, an experimentally validated multilink dynamic model that incorporated modifications in shoulder torque was used to simulate the flight phase dynamics of overrotated landings. The simulation results indicate that modification in shoulder torque during the flight phase enables gymnasts to maintain lower extremity kinematics and initiate contact with trunk angular velocities consistent with those observed during successful landings. These results suggest that modifications in the control logic of one subsystem may be sufficient for achieving both global and local task objectives of landing.  相似文献   

18.
The current study aimed to examine the effect of anterior cruciate ligament deficiency (ACLd) on joint kinetics and dynamic stability control after a single leg hop test (SLHT). Twelve unilateral ACLd patients and a control subject group (n=13) performed a SLHT over a given distance with both legs. The calculation of joint kinetics was done by means of a soft-tissue artifact optimized rigid full-body model. Margin of stability (MoS) was quantified by the difference between the base of support and the extrapolated center of mass. During landing, the ACLd leg showed lower external knee flexion moments but demonstrated higher moments at the ankle and hip compared to controls (p<0.05). The main reason for the joint moment redistribution in the ACLd leg was a more anterior position of the ground reaction force (GRF) vector, which affected the moment arms of the GRF acting about the joints (p<0.05). For the ACLd leg, trunk angle was more flexed over the entire landing phase compared to controls (p<0.05) and we found a significant correlation between moment arms at the knee joint and trunk angle (r2 = 0.48;p<0.01). The consequence of this altered landing strategy in ACLd legs was a more anterior position of the center of mass reducing the MoS (p<0.05). The results illustrate the interaction between trunk angle, joint kinetics and dynamic stability during landing maneuvers and provide evidence of a feedforward adaptive adjustment in ACLd patients (i.e. more flexed trunk angle) aimed at reducing knee joint moments at the cost of dynamic stability control.  相似文献   

19.
The purpose of the study was to characterize the Balance-Dexterity Task as a means to investigate a concurrent bipedal lower-extremity task and trunk control during dynamic balance. The task combines aspects of single-limb balance and the lower-extremity dexterity test by asking participants to stand on one limb while compressing an unstable spring with the contralateral limb to an individualized target force. Nineteen non-disabled participants completed the study, and performance measures for the demands of each limb – balance and dexterous force control – as well as kinematic and electromyographic measures of trunk control were collected. Given five practice trials, participants achieved compression forces ranging from 100 to 139 N (mean 121.2 ± 12.3 N), representing 14.4–23.0% of body weight (mean 18.7 ± 2.4%), which were then presented as target forces during test trials. Dexterous force control coefficient of variation and average magnitude of the center of pressure (COP) resultant velocity were associated such that greater variability in force control was accompanied by greater COP velocity (R = 0.598, p = 0.007). Trunk coupling, quantified as the coefficient of determination (R2) of a frontal plane thorax and pelvis angle-angle plot, varied independently of any measure of balance or dexterous force control. The Balance-Dexterity Task is a continuous, dynamic balance task where bipedal coordination and trunk coupling can be concurrently observed and studied.  相似文献   

20.
In the first part of lifting movements, the trunk movement is surprisingly resistant to perturbations. This study examined which factors contribute to this perturbation resistance of the trunk during lifting. Three possible mechanisms were studied: force-length-velocity characteristics of muscles, the momentum of the trunk as well as the effect of passive extending of the elbows. A forward dynamics modelling and simulation approach was adopted with two different input signals: (1) stimulation of Hill-type muscles versus (2) net joint moments. Experimental data collected during an unperturbed lifting movement were used as a reference, which a simulated lifting movement had to resemble. Subsequently, the simulated lifting movement was perturbed by applying 10 kg extra mass at the wrist (both before and after lift-off and with/without a fixed elbow), without modifying the input signals. The momentum of the trunk appeared to be insufficient to explain the perturbation resistance of trunk movements as found experimentally. In addition to the momentum of the trunk, the force-length-velocity characteristics of the muscles are necessary to account for the observed perturbation resistance. Initial extension of the elbow due to the mass perturbation delayed the propagation of the load to the shoulder. However, this delay is reduced due to the impedance at the elbow provided by the characteristics of muscles spanning the elbow. So, the force-length-velocity characteristics of the muscles spanning the elbow joint increase the perturbation at the trunk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号