首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Using a partially purified replication complex from tobacco chloroplasts, replication origins have been localized to minimal sequences of 82 (pKN8, positions 137 683-137 764) and 243 bp (pKN3, positions 130 513-130 755) for ori A and ori B respectively. Analysis of in vitro replication products by two-dimensional agarose gel electrophoresis showed simple Y patterns for single ori sequence-containing clones, indicative of rolling circle replication. Double Y patterns were observed when a chloroplast DNA template containing both ori s (pKN9) was tested. Dpn I analysis and control assays with Escherichia coli DNA polymerase provide a clear method to distinguish between true replication and DNA repair synthesis. These controls also support the reliability of this in vitro chloroplast DNA replication system. EM analysis of in vitro replicated products showed rolling circle replication intermediates for single ori clones (ori A or ori B), whereas D loops were observed for a clone (pKN9) containing both ori s. The minimal ori regions contain sequences which are capable of forming stem-loop structures with relatively high free energy and other sequences which interact with specific protein(s) from the chloroplast replication fraction. Apparently the minimal ori sequences reported here contain all the necessary elements for support of chloroplast DNA replication in vitro.  相似文献   

3.
Summary pMV158 is a 5.4 kb broad host range multicopy plasmid specifying tetracycline resistance. This plasmid and two of its derivatives, pLS1 and pLS5, are stably mantained and express their genetic information in gram-positive and gram-negative hosts. The in vitro replication of plasmid pMV158 and its derivatives was studied in extracts prepared from plasmid-free Escherichia coli cells and the replicative characteristics of the streptococcal plasmids were compared to those of the E. coli replicons, ColE1 and the mini-R1 derivative pKN182. The optimal replicative activity of the E. coli extracts was found at a cellular phase of growth that corresponded to 2 g wet weight of cells per litre. Maximal synthesis of streptococcal plasmid DNA occurred after 90 min of incubation and at a temperature of 30° C. The optimal concentration of template DNA was 40 g/ml. Higher plasmid DNA concentrations resulted in a decrease in the incorporation of dTMP, indicating that competition of specific replication factor(s) for functional plasmid origins may occur. In vitro replication of plasmid pMV158 and its serivatives required the host RNA polymerase and de novo protein synthesis. The final products of the streptococcal plasmid DNAs replicated in the E. coli in vitro system were monomeric supercoiled DNA forms that had completed at least one round of replication, although a set of putative replicative intermediates could also be found. The results suggest that a specific plasmid-encoded factor is needed for the replication of the streptococcal plasmids.  相似文献   

4.
Plasmid R1 replication in vitro is inactive in extracts prepared from a dnaK756 strain but is restored to normal levels upon addition of purified DnaK protein. Replication of R1 in extracts of a dnaKwt strain can be specifically inhibited with polyclonal antibodies against DnaK. RepA-dependent replication of R1 in dnaK756 extracts supplemented with DnaKwt protein at maximum concentration is partially inhibited by rifampicin and it is severely inhibited at sub-optimal concentrations of DnaK protein. The copy number of a run-away R1 vector is reduced in a dnaK756 background at 30 degrees C and at 42 degrees C the amplification of the run-away R1 vector is prevented. However a runaway R1 vector containing dnaK gene allows the amplification of the plasmid at high temperature. These data indicate that DnaK is required for both in vitro and in vivo replication of plasmid R1 and show a partial compensation for the low level of DnaK by RNA polymerase. In contrast ColE1 replication is not affected by DnaK as indicated by the fact that ColE1 replicates with the same efficiency in extracts from dnaKwt and dnaK756 strains.  相似文献   

5.
By using an in vitro system for R1 plasmid replication dependent on a plasmid-encoded repA protein and host dnaA protein, 5' ends of the nascent leading strand were located at positions 1986-1992, some 380 base pair downstream of oriR. Analyses of early replication intermediates generated in vitro in the presence of dideoxy TTP also indicated that replication initiates about 400 base pair downstream of oriR and proceeds unidirectionally. When a 418-base single-stranded DNA from position 1778 to 2195, derived from the leading strand template, was cloned onto an M13 vector, the chimeric single-stranded phage could be replicated in vitro with only single-stranded DNA binding protein, primase (dnaG gene product), and DNA polymerase III holoenzyme. Furthermore, the priming occurred at a site identical to leading strand initiation. These results strongly suggest that the leading strand synthesis is primed by primase alone. The lagging strand synthesis is specifically terminated at position 1515 or 1516 within oriR, preventing further leftward fork movement. Based on these results, a scheme of R1 plasmid replication is presented.  相似文献   

6.
Li YJ  Stallcup MR  Lai MM 《Journal of virology》2004,78(23):13325-13334
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.  相似文献   

7.
Alfalfa mosaic virus (AMV) RNAs 1 and 2 encode the replicase proteins P1 and P2, respectively, whereas RNA 3 encodes the movement protein and the coat protein (CP). When RNAs 1 and 2 were transiently expressed from a T-DNA vector (R12 construct) by agroinfiltration of Nicotiana benthamiana, the infiltrated leaves accumulated minus-strand RNAs 1 and 2 and relatively small amounts of plus-strand RNAs. In addition, RNA-dependent RNA polymerase (RdRp) activity could be detected in extracts of the infiltrated leaves. After transient expression of RNAs 1 and 2 with the 3'-untranslated regions (UTRs) of both RNAs deleted (R1Delta/2Delta construct), no replication of RNAs 1 and 2 was observed, while the infiltrated leaves supported replication of RNA 3 after inoculation of the leaves with RNA 3 or expression of RNA 3 from a T-DNA vector (R3 construct). No RdRp activity could be isolated from leaves infiltrated with the R1Delta/2Delta construct, although P1 and P2 sedimented in a region of a glycerol gradient where active RdRp was found in plants infiltrated with R12. RdRp activity could be isolated from leaves infiltrated with constructs R1Delta/2 (3'-UTR of RNA 1 deleted), R1/2Delta (3'-UTR of RNA 2 deleted), or R1Delta/2Delta plus R3. This demonstrates that the 3'-UTR of AMV RNAs is required for the formation of a complex with in vitro enzyme activity. RNAs 1 and 2 with the 3'-UTRs deleted were encapsidated into virions by CP expressed from RNA 3. This shows that the high-affinity binding site for CP at the 3'-termini of AMV RNAs is not required for assembly of virus particles.  相似文献   

8.
The hepatitis C virus (HCV) replicon system is a potent tool for understanding the mechanisms of HCV replication and proliferation, and for the development of treatments for patients with HCV. Recently, we established an HCV subgenomic replicon (50-1) using HCV genome RNA obtained from the cultured human T cell line MT-2C infected with HCV (isolate 1B-1) in vitro. In order to further obtain other HCV replicons without difficulty, we generated a replicon RNA library derived from human non-neoplastic hepatocytes infected with HCV (isolate 1B-2) in vitro. Upon transfection of the generated RNA library to "cured cells," from which the 50-1 subgenomic replicon was eliminated by prolonged treatment with interferon-alpha, we successfully established a new HCV subgenomic replicon, 1B-2R1. We characterized 1B-2R1 replicon in terms of efficiency of replication, HCV sequence, and sensitivity to interferons. The results revealed that the replication level of the 1B-2R1 replicon was comparable to that of the 50-1 replicon. We also found that the 1B-2R1 replicon possessed an HCV sequence distinct from those of other replicons established to date, and that the 1B-2R1 replicon was sensitive to interferon-alpha, interferon-beta, and interferon-gamma. Taken together, present results indicate that the replicon RNA library generated using an in vitro HCV infection system is useful for the establishment of an HCV subgenomic replicon.  相似文献   

9.
10.
Brome mosaic virus (BMV) is a positive-strand RNA virus that encodes two RNA replication proteins, the helicaselike 1a and the polymeraselike 2a. 1a and 2a share extensive sequence similarities with proteins encoded by many other members of the alphaviruslike superfamily. While further purifying enzymatically active RNA-dependent RNA polymerase from plants infected by BMV, we observed that 1a, 2a, and the polymerase activity all cofractionated through multiple independent purification steps. Moreover, using immunoprecipitation, we found that BMV 1a and 2a proteins synthesized in rabbit reticulocyte lysates or insect cells can form a specific complex in vitro. Complex formation was more efficient when 1a and 2a were cotranslated than when they were mixed after independent synthesis. In an antibody-independent assay, in vitro-translated 1a protein was also found to bind to 2a protein fixed on a nylon membrane. A three-amino-acid insertion in 1a that blocks BMV RNA replication in vivo also blocked in vitro interaction with 2a, while another two-amino-acid insertion that renders the 1a protein temperature sensitive for RNA replication interacted in vitro with 2a at 24 degrees C but not at 32 degrees C. These results and previous genetic data suggest that the 1a-2a interaction observed in vitro is required for BMV RNA replication and may have direct implications for other members of the alphaviruslike superfamily.  相似文献   

11.
R J Hayes  K W Buck 《Cell》1990,63(2):363-368
A soluble RNA-dependent RNA polymerase was isolated from Nicotiana tabacum plants infected with cucumber mosaic virus (CMV), which has a genome of three positive-strand RNA components, 1, 2, and 3. The purified polymerase contained two virus-encoded polypeptides and one host polypeptide. Polymerase activity was completely dependent on addition of CMV RNA as template, and the products of reaction were single-stranded (ss) RNA and double-stranded (ds) RNA, corresponding to RNAs 1, 2, and 3, and a subgenomic RNA (RNA 4) derived from RNA 3. The ratio of ssRNA to dsRNA was about 5:1, and the ssRNA was shown to be predominantly the positive strand. This demonstrates the complete replication of a eukaryotic virus RNA in vitro by a template-dependent RNA polymerase.  相似文献   

12.
The isolation of conditional mutants with an altered copy number of the R plasmid R1drd-19 is described. Temperature-dependent as well as amber-suppressible mutants were found. These mutant plasmids have been named pKN301 and pKN303, respectively. Both types of mutations reside on the R plasmid. No difference in molecular weight could be detected by neutral sucrose gradient centrifugation for any of the mutant plasmids when compared with the wild-type plasmid. The number of copies of the plasmids was determined by measurement of the specific activity of the R plasmid-mediated β-lactamase and by measurement of covalently closed circular (CCC) DNA in alkaline sucrose gradients and dye-CsCl density gradients. Below 34 °C the temperature-dependent mutant, pKN301, had the same copy number as the wild type, while this was four times that of the wild type above 37 °C. The amber mutant pKN303 had a copy number indistinguishable from that of the wild-type plasmid in a strain containing a strong amber suppressor and a copy number about five times that of the wild-type plasmid in a strain lacking an amber suppressor. In a strain containing a temperature-sensitive amber suppressor, the amber mutant's copy number increased with the decrease in amber suppressor activity. Thus, the existence of the temperature-dependent and the amber-suppressible R-plasmid copy mutants indicates that the system that controls the replication of plasmid R1drd-19 contains an element with a negative function and that this element is a protein.  相似文献   

13.
L Koppes  K Nordstr?m 《Cell》1986,44(1):117-124
A 16 bp BgI II fragment was deleted in vitro from the minimal origin of replication of the Escherichia coli chromosome, oriC, and was replaced by a 10 kb R1 miniplasmid, pKN1562, containing the basic R1 replicon and a kanamycin resistance gene. The deletion-insertion was transferred by homologous recombination into the chromosome of a dnaA(ts) strain. P1 transduction separated the origin "mutation" from the dnaA46 allele. Integration of mini-R1 into oriC was verified by Southern blotting and by analysis of the R1 incompatibility phenotype. It was possible to isolate normal R1 miniplasmids from the integrated R1. Chromosome replication was initiated at random times after a short delay. The constructed strains grew 20%-30% slower than the wild type and showed more heterogeneous cell sizes.  相似文献   

14.
15.
16.
The efficient delivery of the hepatitis C virus (HCV) RNA subgenomic replicon into cells is useful for basic and pharmaceutical studies. The adenovirus (Ad) vector is a convenient and efficient tool for the transduction of foreign genes into cells in vitro and in vivo. However, an Ad vector expressing the HCV replicon has never been developed. In the present study, we developed Ad vector containing an RNA polymerase (pol) I-dependent expression cassette and a tetracycline-controllable RNA pol I-dependent expression system. We prepared a hybrid promoter from the tetracycline-responsive element and the RNA pol I promoter. Ad vector particles coding the hybrid promoter-driven HCV replicon could be amplified, and interferon, an inhibitor of HCV replication, reduced HCV replication in cells transduced with the Ad vector coding HCV replicon. This is the first report of the development of an Ad vector-mediated HCV replicon system.  相似文献   

17.
Jia D  Chen H  Zheng A  Chen Q  Liu Q  Xie L  Wu Z  Wei T 《Journal of virology》2012,86(10):5800-5807
An in vitro culture system of primary cells from white-backed planthopper, an insect vector of Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus, was established to study replication of the virus. Viroplasms, putative sites of viral replication, contained the nonstructural viral protein P9-1, viral RNA, outer-capsid proteins, and viral particles in virus-infected cultured insect vector cells, as revealed by transmission electron and confocal microscopy. Formation of viroplasm-like structures in non-host insect cells upon expression of P9-1 suggested that the matrix of viroplasms observed in virus-infected cells was composed basically of P9-1. In cultured insect vector cells, knockdown of P9-1 expression due to RNA interference (RNAi) induced by synthesized double-stranded RNA (dsRNA) from the P9-1 gene strongly inhibited viroplasm formation and viral infection. RNAi induced by ingestion of dsRNA strongly abolished viroplasm formation, preventing efficient viral spread in the body of intact vector insects. All these results demonstrated that P9-1 was essential for viroplasm formation and viral replication. This system, combining insect vector cell culture and RNA interference, can further advance our understanding of the biological activities of fijivirus replication proteins.  相似文献   

18.
K Shimizu  H Handa  S Nakada    K Nagata 《Nucleic acids research》1994,22(23):5047-5053
An in vitro RNA synthesis system mimicking replication of genomic influenza virus RNA was developed with nuclear extracts prepared from influenza virus-infected HeLa cells using exogenously added RNA templates. The RNA synthesizing activity was divided into two complementing fractions, i.e. the ribonucleoprotein (RNP) complexes and the fraction free of RNP, which could be replaced with RNP cores isolated from virions and nuclear extracts from uninfected cells, respectively. When nuclear extracts from uninfected cells were fractionated by phosphocellulose column chromatography, the stimulatory activity for RNA synthesis was further separated into two distinct fractions. One of them, tentatively designated RAF (RNA polymerase activating factor), stimulated RNA synthesis with either RNP cores or RNA polymerase and nucleocapsid protein purified from RNP cores as the enzyme source. In contrast, the other, designated PRF (polymerase regulating factor), functioned as an activator only when RNP cores were used as the enzyme source. Biochemical analyses revealed that PRF facilitates dissociation of RNA polymerase from RNP cores. Of interest is that virus-coded non-structural protein 1 (NS1), which has been thought to be involved in regulation of replication, counteracted PRF function. Roles of cellular factors and viral proteins, NS1 in particular, are discussed in terms of regulation of influenza virus RNA genome replication.  相似文献   

19.
The RNA-dependent RNA polymerase of hepatitis C virus (HCV) is necessary for the replication of viral RNA and thus represents an attractive target for drug development. Several structural classes of nonnucleoside inhibitors (NNIs) of HCV RNA polymerase have been described, including a promising series of benzothiadiazine compounds that efficiently block replication of HCV subgenomic replicons in tissue culture. In this work we report the selection of replicons resistant to inhibition by the benzothiadiazine class of NNIs. Four different single mutations were identified in separate clones, and all four map to the RNA polymerase gene, validating the polymerase as the antiviral target of inhibition. The mutations (M414T, C451R, G558R, and H95R) render the HCV replicons resistant to inhibition by benzothiadiazines, though the mutant replicons remain sensitive to inhibition by other nucleoside and NNIs of the HCV RNA polymerase. Additionally, cross-resistance studies and synergistic inhibition of the enzyme by combinations of a benzimidazole and a benzothiadiazine indicate the existence of nonoverlapping binding sites for these two structural classes of inhibitors.  相似文献   

20.
利用RT-PCR技术扩增了口蹄疫病毒(FMDV)编码RNA依赖的RNA聚合酶的3D基因,并将其克隆到原核表达质粒载体pET-28a( )中。3D基因经测序确认后在大肠杆菌BL-21中表达,表达产物纯化的目的蛋白进行Western-blotting检测,获得分子量约55KDa的单一3D基因表达产物。利用RNA体外复制体系和荧光定量PCR技术,证明纯化的3D基因表达产物RNA依赖的RNA聚合酶具有较高的酶活性,可以在体外从头合成FMDVRNA,且主要以引物依赖的方式合成病毒基因组。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号