首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Inhalation of airborne microorganisms and organic dust is an occupational concern among workers in agricultural industries. Airborne microorganisms and particulate matter samples were collected from poultry house, flourmill, textile, and food industry sites by use of liquid impinger and gravimetric samplers. Particulate matter concentrations were recorded at median concentrations of 1.56, 1.92, 4.39, and 0.7 mg/m3 in the occupied poultry house, textile, flourmill, and food indoor working environments, respectively. The highest median particulate matter concentration (27.9 mg/m3) was detected at the flourmill’s stack site. The highest median indoor concentration of culturable airborne bacteria (6.23 × 105 CFU/m3) was found at the occupied poultry-house site and the lowest concentration (4.6 × 103 CFU/m3) was found at the food industry site. The highest median indoor concentration of culturable airborne fungi (3.15 × 104 CFU/m3) was found at the flourmill site whereas the lowest (1.24 × 103 CFU/m3) was found at the textile industry site. Bacillus and Staphylococcus were the predominant Gram-positive bacteria whereas Acinetobacter and Klebsiella were the predominant Gram-negative bacteria. Escherichia coli and Salmonella were only detected in the indoor air at the poultry house site. Aspergillus flavus, Aspergillus niger, Penicillium, and yeast were the predominant fungal types at flourmill, textile, food industry, and poultry house, respectively. Workers were continuously exposed to airborne microorganisms at a median value of 104 CFU/m3 in all the industries studied.  相似文献   

2.
This study investigates the exposure of workers to biological particles in a poultry litter burning plant in operation. The microorganism concentrations were examined at different workplaces during procedures leading to increased emissions. The concentrations of culturable airborne mesophilic, xerophilic and thermophilic microorganisms in the ambient air were tested inside and outside of the burning plant using two different methods of measuring. The focus of this study was on the quantitative evaluation of culturable bacteria as well as the quantitative and qualitative evaluation of gram-negative bacteria, fungi and thermophilic actinomycetes. The maximum airborne concentrations were found in the delivery hall. Mesophilic bacteria concentrations reached up to 1.7 × 106 CFU/m3; gram-negative bacteria up to 9.1 × 102 CFU/m3. Fungal propagule concentrations for xerophilic fungi were between 1.2 × 103 and 2.9 × 104 CFU/m3 and for mesophilic fungi between 4.4 × 102 and 2.9 × 104 CFU/m3. Among fungi, Aspergillus niger, Eurotium herbariorum and Scopulariopsis brevicaulis species were dominant. Thermophilic actinomycetes reached airborne concentrations of 8.7 × 104 CFU/m3, with increased concentrations of the pathogens causing extrinsic allergic alveolitis. The high concentrations of airborne microorganisms in poultry litter burning plants and the potential hazard of the intake of microorganisms including potential pathogens require the introduction of consistent measures in both technical areas and personnel management.  相似文献   

3.
The number of airborne microorganisms in the area of large-scale composting facilities with different composting techniques (A: open facility using the intensive decomposition process [4000 t/year]. B: closed facility with compost containers [7000 t/year], C: closed facility with table-pile compositing and automatic turning equipment [22 000 t/year]) was investigated using impactor sampling systems (Andersen samplers). All counts carried out inside the closed facilities, especially during the turning process, showed values of >5.0 × 105 CFU/m3 for viable bacteria and moulds with a proportion ofAspergillus fumigatus of up to 64%. Depending on the type of facility, different median values were determined inside the plant area. Counts were highest in the immediate area around the biofilter outside of Facility C (1.7 × 104 CFU/m3 for bacteria and 9.5 × 103 CFU/m3 for moulds). In view of the high load of ambient airborne microorganisms inside the composting facilities, adequate occupational health measures are urgently required. Counts determining the hazard to neighbourhood residents at distances of between 150 and 2000 m showed, depending on the facility, annual median values of 170–330 CFU/m3 for bacteria, 75–340 CFU/m3 for moulds, and 15–52 CFU/m3 forA. fumigatus. Higher individual counts — up to 3 × 103 CFU/m3 for moulds and up to 350 CFU/m3 forA. fumigatus — were found as a result of specific climatic influences, (e.g. winds) and activities as well poor operation. Given the high proportion ofA. fumigatus in the exhaust air, this mould can serve as an indicator for the evaluation of the health risk. However, the maximum values found in the present study, may also be caused by other events in rural areas, (e.g. agricultural activities). With regard to neighbourhood residents, odour complaints are more important than pollution by microorganisms.  相似文献   

4.
Thailand border market is where the local Thais, Cambodians, Laotians, and Burmeses exchange their goods and culture at the border checkpoints. It is considered to be the source of aerial disease transmission especially for foreigners because it is always very crowded with people from all walks of life. Unhealthy air quality makes this area high risk of spread of airborne diseases. This study assessed airborne concentrations of bacteria and fungi in a border market to improve exposure estimates and develop efficient control strategies to reduce health risk. The density and distribution of airborne bacteria and fungi were investigated in the Chong Chom border market in Surin Province, Thailand. Eighteen air sampling sites were taken from outdoors and various work environments including indoor footpaths, wooden handicraft shops, electronic shops, the secondhand clothing shops, and fruit market areas. Exposed Petri plate method and liquid impinger sampler were used for sampling at the breathing zone, 1.5 m above the floor level, during weekend and holiday. Meteorological factors such as relative humidity, temperature, and light intensity were collected by portable data logger. The relative humidity was 67–73%, and temperature 29–33°C, and light varied between 18 and 270 Lux m−2. Gram-positive and Gram-negative bacteria were found at a mean value of 104 CFU m−3, and airborne fungi of 103 CFU m−3 were recorded. The highest concentration of culturable airborne microorganisms was found along the indoor footpath (9.62 × 104 CFU m−3 and 750.00 CFU/plate/h for impingement and sedimentation methods, respectively), the fruit market area (7.86 × 104 CFU m−3 and 592.42 CFU/plate/h for impingement and sedimentation methods, respectively), and the secondhand clothing shop (4.59 × 103 CFU m−3 and 335.42 CFU/plate/h for impingement and sedimentation methods, respectively) for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The lowest concentration of Gram-positive bacteria, Gram-negative bacteria, and fungi was found only at the outdoor area at 1.53 × 104 CFU m−3, 0.93 × 104 CFU m−3 and 0.80 × 103 CFU m−3 by means of impingement method and 136.67 CFU/plate/h, 69.25 CFU/plate/h, and 62.00 CFU/plate/h by means of sedimentation methods for Gram-positive bacteria, Gram-negative bacteria, and fungi, respectively. The most frequently present airborne bacteria were identified as Bacillus, Corynebacteria, Diplococcus, Micrococcus, Acinetobacter, Alcaligenes, Enterobacter, and spore former rods. Acremonium, Aspergillus, Cladosporium, Penicillium, and Sporotrichum were the most frequently found aerosol fungi genera. The distribution of airborne microorganisms correlated with relative humidity and light factors based on principal component analysis. In conclusion, the border market is a potential source of aerial disease transmission and a various hazards of bioaerosols for workers, consumers, sellers, and tourists. The bioaerosol concentration exceeded the standard of occupational exposure limit. Many major indicators of allergenic and toxigenic airborne bacteria and fungi, Acinetobacter, Enterobacter, Pseudomonas, Cladosporium, Alternaria, Aspergillus, and Penicillium, were found in the various market environments.  相似文献   

5.
The influence of sample-collection-time on the recovery of culturable airborne microorganisms using a low-flow-rate membrane-filtration unit and a high-flow-rate liquid impinger were investigated. Differences in recoveries were investigated in four different atmospheric environments, one mid-oceanic at an altitude of ~10.0 m, one on a mountain top at an altitude of ~3,000.0 m, one at ~1.0 m altitude in Tallahassee, Florida, and one at ~1.0 m above ground in a subterranean-cave. Regarding use of membrane filtration, a common trend was observed: the shorter the collection period, the higher the recovery of culturable bacteria and fungi. These data also demonstrated that lower culturable counts were common in the more remote mid-oceanic and mountain-top atmospheric environments with bacteria, fungi, and total numbers averaging (by sample time or method categories) <3.0 colony-forming units (CFU) m−3. At the Florida and subterranean sites, the lowest average count noted was 3.5 bacteria CFU m−3, and the highest averaged 140.4 total CFU m−3. When atmospheric temperature allowed use, the high-volume liquid impinger utilized in this study resulted in much higher recoveries, as much as 10× greater in a number of the categories (bacterial, fungal, and total CFU). Together, these data illustrated that (1) the high-volume liquid impinger is clearly superior to membrane filtration for aeromicrobiology studies if start-up costs are not an issue and temperature permits use; (2) although membrane filtration is more cost friendly and has a ‘typically’ wider operational range, its limits include loss of cell viability with increased sample time and issues with effectively extracting nucleic acids for community-based analyses; (3) the ability to recover culturable microorganisms is limited in ‘extreme’ atmospheric environments and thus the use of a ‘limited’ methodology in these environments must be taken into account; and (4) the atmosphere culls, i.e., everything is not everywhere.  相似文献   

6.
Bioaerosol concentrations inside one naturally ventilated and one mechanically ventilated swine finishing barn were assessed by sampling air using membrane filtration and impaction (six-stage Andersen sampler), and assayed by culture method. The barns, located on the same commercial farm in northeast Kansas, did not show any significant difference (p > 0.05) in concentrations of total and respirable airborne microorganisms. The overall mean total concentrations inside the two barns were 6.6 × 104 colony forming units (CFU)/m3 (SD = 3.8 × 104 CFU/m3) as measured by filtration and 8.6 × 104 CFU/m3 (SD = 5.1 × 104 CFU/m3) by impaction. The overall mean respirable concentrations were 9.0 × 103 CFU/m3 (SD = 4.1 × 103 CFU/m3) measured by filtration and 2.8 × 104 CFU/m3 (SD = 2.2 × 104 CFU/m3) by impaction. Total and respirable CFU concentrations measured by impaction were significantly (p < 0.05) higher than that by filtration. The persistent strains of microorganisms were various species of the following genera: Staphylococcus, Pseudomonas, Bacillus, Listeria, Enterococcus, Nocardia, Lactobacillus, and Penicillium. It appears that filtration sampling can be used for a qualitative survey of bioaerosols in swine barns while the Andersen sampler is suitable for both quantitative and qualitative assessments. Received: 2 April 2001 / Accepted: 13 June 2001  相似文献   

7.
As part of a program to develop starter cultures aiding in the spoilage control and sanitation of African fermented foods, a cereal-based food (‘ogi’ and its solid form ‘agidi’ or ‘eko’) was prepared using a bacteriocin-producingLactobacillus strain as the starter culture. The survival of an enterotoxigenicEscherichia coli strain was investigated in the naturally fermented food and in food fermented with the starter bacteriocin-producingLactobacillus strain. An inhibition ofE. coli was observed within 2 h of incubation in ‘ogi’ fermented with the bacteriocin producing strain. After 6 h, the viable count ofE. coli in locally fermented ‘ogi’ was log 6.41 (2.54×106CFU/mL), whereas in ‘ogi’ fermented with the bacteriocin producer it was reduced to log 1.70 (0.5×102 CFU/mL). Comparison of the shelf life of ‘agidi’ prepared from the naturally fermented food with that fermented with the bacteriocin-producing starter culture showed that the latter had a better shelf life (kept for 11 d before spoilage occurred as compared with 7 d for the natural one). The results are discussed in terms of the potential of bacteriocin-producing cultures in the control and retardation of spoilage and food-forne infections in some African fermented foods.  相似文献   

8.
Numbers of airborne microorganisms, fungi, Gram-negative bacteria, thermophilic microorganisms, endotoxins and dust have been monitored in resource recovery plants and composting plants. The work is still in progress, so this paper decribes only preliminary results. Only low levels (< 15 ng m?3) of endotoxins were found at all locations. Levels of microorganisms, fungi, Gram-negative bacteria and dust changed with quality of waste, activity in the plant etc. Levels of airborne microorganisms, endotoxins and dust could be considerably decreased in resource recovery plants if only waste of good quality, e.g. presorted materials, is handled. For composting plants the highest levels of airborne microorganisms were found during aeration, especially by indoor composting where levels of 8.3 × 105 CFU of mesophilic microorganisms were found.  相似文献   

9.
Microbial environmental monitoring represents one of the most useful methods to assess potential risks related to the integrity of cultural heritage and people’s health. The monitoring plan described in the present work is based on standardized techniques for measuring microbial air and surface contamination. Air contamination is assessed through both active and passive samplings, measuring the concentration of microbes in air (in colony forming units per cubic metre, CFU/m3) and the rate at which microorganisms settle on surfaces (expressed by the Index of Microbial Air Contamination, IMA, CFU/dm2/h). For surface contamination, two parameters are measured using nitrocellulose membranes: the Microbial Buildup (MB, the total number of microorganisms accumulated on a surface in an unknown period of time prior to the sampling) and the Hourly Microbial Fallout (HMF, the number of microorganisms that settle on a specific surface during 1 h). The monitoring plan was implemented at the Pilotta Palace in Parma, Italy, during the Correggio exhibition in 2009. Samplings were taken before and during opening times. Some microbial contamination was already detected before the arrival of visitors: air contamination mean values of 99.1 CFU/m3 and 5.2 CFU/dm2/h were recorded, while MB and HMF mean values for surfaces were 92 and 7 CFU/dm2, respectively. A significant increase was recorded in air contamination during opening times, with mean values of 323.7 CFU/m3 and 19.4 CFU/dm2/h; surface contamination values increased as well. This monitoring plan represents a contribution towards the definition of a much needed standardized methodology.  相似文献   

10.
To accurately quantify airborne Aspergillus fumigatus (A. fumigatus) spores in rabbit houses, the real-time polymerase chain reaction (real-time PCR) and culture-based counting method (CCM) were employed to determine the airborne A. fumigatus spore concentrations. The results showed that, of the three rabbit houses (A, B, and C), the average concentrations of airborne A. fumigatus spores determined by real-time PCR were 3.0 × 103, 3.3 × 103, and 1.5 × 103 spores/m3 air, respectively, while those determined by CCM were 2.5 × 102, 2.8 × 102, and 1.1 × 102 colony-forming unit/m3 air (CFU/m3 air), respectively, i.e., the former concentration was 12–14 times higher than the latter one. Therefore, the conventional CCM underestimated the concentrations of airborne fungal spores, and it is insufficient to determine the microbial aerosol concentration and evaluate the health risk only using CCM.  相似文献   

11.
This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 × 105 and 143.7 CFU/m3, respectively. The concentration of airborne culturable fungi was about 103 CFU/m3, with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.  相似文献   

12.
The airborne Penicillium spp. and total airborne fungal spore concentration was investigated in the grain shops of Nagpur city, India, using a volumetric Hi‐Air sampler system Mark II (Hi Media Laboratories Ltd., India). The mycotoxins were analysed from the Penicillium isolates obtained from the seeds by thin layer chromatography.

The mean concentration of the total fungi isolated from different grain shops ranged from 7.8×102 to 1.1×103 CFU/m3. The mean concentration of Penicillium isolated from the air of grain shops ranged from 8.6×101 CFU/m3 (10.8%) to 1.7×102 CFU/m3 (19.9%). Among the 13 species of Penicillium which were isolated, P. citrinum Thom was the most prevalent species (24.2%), followed by P. oxalicum Currie & Thom (16.5), P. digitatum Saccardo (8.9%), P. janthinellum Biourge (8.7%), P. funiculosum Thom (8.3%), P. chrysogenum Thom (6.4%), P. purpurogenum Stoll (6.2%), P. brevicompactum Dierckx (4.8%), P. frequentans Westling (4.2%), P. italicum Wehmer (3.8%), P. rubrum Stoll (3.4%), P. expansum Link (2.9%) and P. cyclopium Westling (1.6%).

Penicillium species were also isolated from seeds such as wheat, maize, soybean, and groundnut. The mycotoxins roquefortin C, citrinin, rubratoxin B, cyclopiazonic acid, verrucosidin, mitorubrinic acid and two unknown metabolites were isolated from Penicillium isolates.  相似文献   

13.
AISI-1020 carbon steel coupons were fixed onto a water circulation loop in order to study the effect of varying NaCl concentrations on formation of biofilms by natural populations of microorganisms. Overall, we observed a reduction in the number of bacteria attached to the metal surfaces as NaCl levels increased. At 12.85 and 80 g/l NaCl, the respective bacterial counts were: 1.7×109 CFU/cm2 and 7.5×102 CFU/cm2 for aerobic species; 1.3×104 CFU/cm2 and 2.1×10 CFU/cm2 for anaerobic species; and 1.8×103 CFU/cm2 and 4.6×10 CFU/cm2 for sulfate-reducing species. However, the opposite trend was observed for the numbers of iron-reducing bacteria: 4.1×106 CFU/cm2 at 12.85 g/l NaCl and 7.5 108 CFU/cm2 at 80 g/l NaCl, respectively. Fungal counts remained constant throughout the experimental period. The salt concentration at which the maximum corrosion rate was observed was 35 g/l. In view of the marked loss of metal mass recorded at this salinity, AISI-1020 carbon steel proved to belong to the group of alloys less resistant to corrosion. Journal of Industrial Microbiology & Biotechnology (2000) 25, 45–48. Received 07 December 1999/ Accepted in revised form 25 April 2000  相似文献   

14.
Alfresco (def. clean, outdoor) airborne bacteria were collected with a commercially available wet-cyclone bioaerosol sampler to demonstrate its use, sample processing and resultant observations of total and culturable bacteria in mid-summer in the mid-Willamette River Valley, OR. Some critiques of the system are given. The maximum and minimum total and culturable airborne bacterial concentrations in the samples were 5.9 × 105 and 8.8 × 102 cells m−3, and 1.3 × 104 and 3.1 CFU m−3, respectively. What is thought to be a diurnal cycle was also observed for both fractions with highest concentrations during the day and lowest at dawn and dusk. The culturable bacteria as a percentage of the total, was maximal at mid-day (≈ 3%) and minimal at early morning and late evening (≈ 0.5–2%). Contrarily, the total bacteria in the downwind dust plume of a grass seed combine was 2.9 × 106 cells m−3 and of these approximately 73% were culturable, a much greater culturable percentage than found in the alfresco outdoor atmosphere.  相似文献   

15.
The project was aimed at evaluating the potential occupational exposure of swine farm workers to dust and microorganisms present in piggery bioaerosols (especially in its respirable fraction) under various breeding conditions. Sampling was carried out in 14 buildings located at 13 pig breeding and production farms in Poland. Concentrations of inhalable and respirable dusts in the air of the piggeries were low (means, respectively, 1.76 and 0.23 mg/m3). The concentration of microorganisms was generally high (mean = 3.53 × 10cfu/m3). More than 96% of determined microorganisms were bacteria (mean = 3.42 × 105 cfu/m3). The fungal concentration was distinctly lower (mean = 2.71 × 10cfu/m3). The concentration of bacteria in the respirable fraction of bioaerosol (mean = 1.51 × 10cfu/m3) made up for 48.2% of their total concentration, while the level of fungi in that fraction (mean = 1.50 × 10cfu/m3) formed 68.8% of the total fungal concentration. The concentration of inhalable dust was significantly modified by the type of breeding system. The factors that significantly affected the total concentrations of microbes and bacteria, as well as their levels in the bioaerosols’ respirable fraction were as follows: herd size, breeding system, feeding method and the type of ventilation system. In the case of fungi, these were the livestock breeding system and the feeding method. Moreover, there was a high positive correlation of inhalable dust concentrations with the fungal concentration, CO2 and relative humidity. A negative correlation was found between concentrations of each microbe group and the airflow velocity. Swine farm workers are exposed to relatively low dust concentrations and high concentrations of microorganisms, bacteria in particular. Fungi, to a much larger extent than bacteria, are correlated with the respirable particles of a piggery bioaerosol, which may harm the respiratory system of exposed workers.  相似文献   

16.
This study evaluated both biosafety levels (BLs) and airborne fungal concentrations in microbiological laboratories in Seoul, Korea. To evaluate biosafety facilities, we used a checklist containing 67 questions in nine categories. We also measured airborne fungal concentration according to the BLs. Airborne fungal concentrations were higher in BL-1 facilities (240 CFU/m3) than in BL-2 facilities (25 CFU/m3). The airborne fungal concentrations significantly differed among the laboratories that were graded as poor, fair, and good. Especially, a significant negative correlation was observed between the airborne fungal concentrations and the biosafety levels (p = .001). We recommend that the guidelines of biosafety be followed to improve laboratory environment.  相似文献   

17.
Many working environments are predisposed for larger than average amounts of fungi and other microorganisms often due to organic material being handled. From 2003 to 2007, the area used for strawberry production in Denmark increased by 62%. The purpose of this study was to determine the levels of exposure to microorganisms, endotoxin, (1→3)-β-d-glucan (β-glucan), and pollen in a field of strawberries. The study was carried out in eastern Denmark from the middle of June to the beginning of August 2008. The strawberries were grown organically, and microbiological pest control agents (MPCAs) were applied during this and former growth seasons. In order to measure exposure to inhalable bioaerosol components, we used stationary filter samplers. Bioaerosol sampling was performed during 4 working days, and a total of 57 samplings were performed. The filters were analysed for contents of fungi, MPCAs, endotoxin, β-glucan, and pollen. The mean exposure was 6,154 CFU Cladosporium sp. m−3, 1.0 × 105 fungal spores m−3, 4.1 × 104 hyphal fragments m−3, 5.8 × 103 pollen m−3, 57.3 ng β-glucan m−3, and 8.9 endotoxin units (EU) m−3. A significant and positive correlation was found between β-glucan and fungal spores and between CFU of Cladosporium sp. and CFU of fungi. We selected specifically for Metarhizium anisopliae, Beauveria bassiana, and the applied MPCAs Trichoderma harzianum, T. polysporum, and Bacillus thuringiensis but found none of these species. In conclusion, our study shows that berry pickers in this organic strawberry field were potentially subjected to higher levels of fungal spores, Cladosporium sp., hyphal fragments, pollen, and thus also β-glucan than is usually seen in outdoor air. Exposure to MPCAs was not seen. The exposure to endotoxin was only slightly higher than e.g. in a town.  相似文献   

18.
Somatic peach plants were regenerated from callus derived from the base of stem explants of the scion cultivars ‘UFO-3’, ‘Maruja’, ‘Flariba’ and ‘Alice Bigi’, and the peach × almond rootstocks ‘Garnem’ and ‘GF677’. A protocol for organogenic plant regeneration was developed using three culture media containing different concentrations of 6-benzyladenine (BA) and indolebutyric acid to produce organogenic calli. Shoots were obtained from sliced calli after their transfer to a differentiation culture medium containing 2 mg l−1 BA and 1 mg l−1 α-naphthalene acetic acid. Using this procedure, up to 29 regenerated plants per callus were obtained. The highest regeneration rate was obtained with the peach × almond rootstocks. This work provides an effective protocol that could be utilized for peach transformation research.  相似文献   

19.
The impact of transgenic white poplars (Populus alba L. cv. ‘Villafranca’) was assessed on the soil aerobic spore-forming bacteria (SFB). The genetically modified poplars, expressing either the StSy gene for resveratrol production or the bar gene for herbicide tolerance, were cultivated in greenhouse. The occurrence of SFB was monitored in soil samples collected at eight different timepoints over a two-year period. The total culturable bacterial population of the StSy and bar trials underwent significant seasonal fluctuations in the range of 106−2.5 × 108 CFU/g dry soil and of 104−5 × 108 CFU/g dry soil, respectively. Changes occurred also within the culturable SFB population with size varying at 103−5 × 104 CFU/g dry soil and 102−2 × 105 CFU/g dry soil in the StSy and bar trials, respectively. No significant differences in the size of the total and SFB culturable populations were observed when comparing each transgenic line with the nontransformed control line while seasonal shifts of soil bacterial populations were evident in both trials. The culturable SFB fraction included three isolates (SFB-1, SFB-2 and SFB-3) classified by 16S rDNA sequence analysis as members of the Bacillus genus. According to the reported data, cultivation of both herbicide-resistant and resveratrol-producing GM white poplars did not affect the culturable SFB population at the soil level.  相似文献   

20.
Wastewater that enters wastewater treatment plants contains lots of pathogenic and nonpathogenic microorganisms which can become bioaerosols during treatment processes and pose health hazard to workers and nearby residents. The emission of the bioaerosols from an urban wastewater treatment plant in spring and summer in different locations and downwind of the plant adopting an extended mechanical aeration system was investigated. Samples of bacteria and fungi were collected within 6 months at 10 selected points by an Anderson one-stage impactor. The highest concentration of bacteria (mean 1373 CFU/m3, 741–2817 CFU/m3) and fungi (mean 1384 CFU/m3, 212–1610 CFU/m3) was found in downwind of the aeration basins. Statistical analysis showed a significant relationship between concentration of bacterial bioaerosols at downwind side of the aeration basins and wind speed (p value <0.05) and temperature (p value <0.05). Also, in the spring and summer, between the number of bacteria and fungi inside the plant and outside the plant (downwind) a significant correlation was observed (p value ≤0.05). The concentrations of bacteria at a distance of 500 m downwind were much higher than those at the background (upwind) point in spring and summer. The processes of wastewater treatment especially using mechanical equipment to create turbulence can be considered as a major source of spreading airborne microorganisms to ambient air of wastewater treatment plants, and the bioaerosols can be dispersed to downwind distances affecting the nearby neighboring. Therefore, in order to decrease the bioaerosols emission, doing some course of actions such as covering the surface of aeration basins, changing the aeration methods and aeration equipment (e. g using diffuser aerator) may be effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号