首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
That predators attack and prey defend is an oversimplified view. When size changes during development, large prey may be invulnerable to predators, and small juvenile predators vulnerable to attack by prey. This in turn may trigger a defensive response in adult predators to protect their offspring. Indeed, when sizes overlap, one may wonder "who is the predator and who is the prey"! Experiments with "predatory" mites and thrips "prey" showed that young, vulnerable prey counterattack by killing young predators and adult predators respond by protective parental care, killing young prey that attack their offspring. Thus, young individuals form the Achilles' heel of prey and predators alike, creating a cascade of predator attack, prey counterattack and predator defence. Therefore, size structure and relatedness induce multiple ecological role reversals.  相似文献   

3.
The proximate forces that create omnivores out of herbivores and predators have long fascinated ecologists, but the causal reasons for a shift to omnivory are poorly understood. Determining what factors influence changes in trophic position are essential as omnivory plays a central role in theoretical and applied ecology. We used sevenspotted lady beetles (Coccinella septempunctata) to test how prey nutrient content affects beetles’ propensity to engage in herbivory. We show that beetles consuming an all‐prey diet demonstrate normal growth and development, but suffer a complete loss of fitness (spermatogenic failure) that is restored via herbivory and supplementation with phytosterols and cholesterol. Furthermore, we show that lady beetles possess a state‐dependent sterol‐specific appetite and redressed their sterol deficit by feeding on foliage. These results demonstrate that predators balance their nutrient intake via herbivory when prey quality is low, and reveal a selective force (sterol nutrition) that drives predatory taxa to omnivory.  相似文献   

4.
Prey bacteria shape the community structure of their predators   总被引:1,自引:0,他引:1  
Although predator–prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other''s community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.  相似文献   

5.
Prey and predators of the Wolf spider Lycosa lugubris   总被引:1,自引:0,他引:1  
Walter D.  Edgar 《Journal of Zoology》1969,159(4):405-411
85 % of the prey of Lycosa lugubris (Walckenaer) consists of Diptera, Hemiptera and Araneae. The food taken appears to differ at different times of year; this is more probably due to changes in abundance of prey than to changes in preference by the spider. L. lugubris is not an active predator. It does not run down its prey but remains motionless and captures what comes within reach. It probably feeds infrequently in the field and it carries its prey for between one and two hours. An attempt was made to assess possible predators, and the species may be its own most important predator.  相似文献   

6.
Understanding the effects of climate change on species’ persistence is a major research interest; however, most studies have focused on responses at the northern or expanding range edge. There is a pressing need to explain how species can persist at their southern range when changing biotic interactions will influence species occurrence. For predators, variation in distribution of primary prey owing to climate change will lead to mismatched distribution and local extinction, unless their diet is altered to more extensively include alternate prey. We assessed whether addition of prey information in climate projections restricted projected habitat of a specialist predator, Canada lynx (Lynx canadensis), and if switching from their primary prey (snowshoe hare; Lepus americanus) to an alternate prey (red squirrel; Tamiasciurus hudsonicus) mitigates range restriction along the southern range edge. Our models projected distributions of each species to 2050 and 2080 to then refine predictions for southern lynx on the basis of varying combinations of prey availability. We found that models that incorporated information on prey substantially reduced the total predicted southern range of lynx in both 2050 and 2080. However, models that emphasized red squirrel as the primary species had 7–24% lower southern range loss than the corresponding snowshoe hare model. These results illustrate that (i) persistence at the southern range may require species to exploit higher portions of alternate food; (ii) selection may act on marginal populations to accommodate phenotypic changes that will allow increased use of alternate resources; and (iii) climate projections based solely on abiotic data can underestimate the severity of future range restriction. In the case of Canada lynx, our results indicate that the southern range likely will be characterized by locally varying levels of mismatch with prey such that the extent of range recession or local adaptation may appear as a geographical mosaic.  相似文献   

7.
8.
Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.  相似文献   

9.
Abstract.
  • 1 The interaction between coleopteran predators and baculovirus-infected larvae was studied in the laboratory and the field in order to assess the potential role of predators in the dissemination of a nucleopolyhedrovirus (NPV).
  • 2 Preference tests using three carabid species, Harpalus rufipes De Geer, Pterostichus melanarius Illiger and Agonum dorsale Pont, showed no evidence of discrimination between healthy and diseased larvae of the cabbage moth Mamestra brassicae L. (Lepidoptera: Noctuidae) as prey items.
  • 3 Virus infectivity was maintained after passage through the predator's gut. NPV mortality ranged from 97% to 20% when test larvae were exposed to faeces collected immediately after and 15 days post-infected meal respectively.
  • 4 The potential for transfer of inoculum in the environment was estimated in the laboratory by soil bioassay. Carabids continuously passed infective virus to the soil for at least 15 days after feeding on infected larvae.
  • 5 Field experiments showed that carabids which had previously fed on diseased larvae transferred sufficient virus to the soil to cause low levels of mortality in larval populations of the cabbage moth at different instars.
  相似文献   

10.
11.
Prey species and prey diet affect growth of invertebrate predators   总被引:4,自引:0,他引:4  
1. The effects of prey species and leaf age used by prey on performance of two generalist invertebrate predators were studied. The focal plant was Plantago lanceolata , which contains iridoid glycosides.
2. Diet of the herbivorous prey influenced their growth rate.
3. The generalist herbivore ( Vanessa cardui ) and the novel-plant feeder ( Manduca sexta ) contained very low levels of iridoid glycosides in their haemolymph, whereas the specialist ( Junonia coenia ) levels were 50–150-fold higher.
4. Predatory stinkbugs ( Podisus maculiventris ) fed either the novel-plant feeder or the specialist exhibited similar developmental rates. However, stinkbugs ate less of the generalist but grew faster. The growth rate of the stinkbugs was higher when the caterpillar species were raised on the new-leaf powder diet, which contained twice as much protein and iridoid glycosides as the mature-leaf powder diet.
5. Jumping spiders ( Phidippus audax ) ate more mealworms ( Tenebrio molitor ) than specialist J. coenia caterpillars, fed either new- or mature-leaf powder diets, and could not gain weight when fed J. coenia.
6. These results indicate that prey quality was not determined solely by the iridoid glycoside concentration in the diet.  相似文献   

12.
While it is well documented that organisms can express phenotypic plasticity in response to single gradients of environmental variation, our understanding of how organisms integrate information along multiple environmental gradients is limited in many systems. Using the freshwater snail Helisoma trivolvis and two common predators (water bugs Belostoma flumineum and crayfish Orconectes rusticus), we explored how prey integrate information along multiple predation risk gradients (i.e. caged predators fed increasing amounts of prey biomass) that induce opposing phenotypes. When exposed to single predators fed increasing amounts of prey biomass, we detected threshold responses; intermediate amounts of consumed biomass induced phenotypic responses, but higher amounts induced little additional induction. This suggests that additional increases in predator‐induced traits with greater predator risk offer minimal increases in fitness or that a limit in the response magnitude was reached. Additionally, the response thresholds were contingent on the predator and focal trait. For shell width, responses were generally detected at a lower amount of consumed biomass by water bugs compared to crayfish. Within the crayfish treatments, we found that the shell thickness response threshold was lower than the shell width response threshold. When we combined gradients of consumed biomass from both predators, we found that the magnitude of response to one predator was often reduced when the other predator was present. Interestingly, these effects were often detected at consumed biomass levels that were lower than the threshold concentration necessary to elicit a response in the single‐predator treatments. Moreover, our combined predator treatments revealed that snails shifted from discrete responses to more continuous (i.e. graded) responses. Together, our results reveal that organisms experiencing multiple environmental gradients can integrate this information to make phenotypic decisions and demonstrate the novel result that an exposure to multiple species of predators can lower the response threshold of prey.  相似文献   

13.
Invertebrate predators and parasitoids have long been characterized as having a hyperbolic (Type 2) functional response. Modifications were made to Holling's sand paper disc experiment which consisted of limiting the initial period of search during which a host must be contacted. Failure to contact a host during this initial period causes the predator to emigrate from the search area. The modification generated a sigmoid (Type 3) functional response. This response resulted from the low probability of encountering a host during the initial period of search at low host densities in the time allotted. A limited period of search has been found in several insect parasitoids. Such a strategy would minimize the time (energy) spent per offspring produced by minimizing the time invested in searching microhabitats in which hosts are scarce or absent.  相似文献   

14.
The consumption rate of an ectothermic predator is highly temperature-dependent and is a key driver of pest-predator population interactions. Not only average daily temperature, but also diurnal temperature variations may affect prey consumption and life history traits of ectotherms. In the present study, we evaluated the impact of temperature alternations on body size, predation capacity and oviposition rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) when presented with eggs of their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). For both predators, mean daily temperature as well as temperature alternation had a substantial impact on the number of prey consumed. At lower average temperatures, more eggs were killed under an alternating temperature regime (20 °C/5 °C and 25 °C/10 °C) than at the corresponding mean constant temperatures (15 and 20 °C). At higher average temperatures (>25 °C), however, the opposite was observed with higher numbers of prey killed at constant temperatures than at alternating temperatures. At 25 °C, temperature variation had no effect on the predation capacity. A similar trend as for the predation rates was observed for the oviposition rates of the phytoseiids. Body size of N. californicus was affected both by average daily temperature and temperature variation, with smaller adult females emerging at alternating temperatures than at constant temperatures, whereas for P. persimilis, temperature variation had no impact on its body size. Our results demonstrate that temperature variations are likely to affect biological control of T. urticae by the studied phytoseiid predators.  相似文献   

15.
The relationship between biodiversity and ecosystem functioning, and the mechanisms underpinning the food web stability, have been intensively investigated in ecological research. The ubiquities of generalists in natural food webs and its important role in dictating these ecosystem properties have been generally recognized. However, how competition between multiple top predators shape these ecosystem properties and determine the success of invasive predators remain largely unexplored. Here, we use a well-developed food web model to investigate the effects of prey preference of top predators on ecosystem functioning and food web stability in both local and invasive conditions. We design several modeling scenarios to mimic combinations of different types of top predators (specialist/generalist) and their origins (local/invasive). Our model theoretically shows that lower exploitation competition for prey between top predators (with distinct prey preferences featured by higher attack rates) would be beneficial for the ecosystem functioning and food web stability. We also demonstrate that the success of top predator invasion depends on the prey preference of both local and invasive top predators. Sensitivity analysis on the model further supports our findings. Our results highlight the importance of prey preference of multiple top predators in manipulating the properties of multi-trophic ecosystems. Our findings may have important implications because the current ongoing global changes profoundly change the phenology of many biological systems and create trophic mismatch, which may manipulate prey preference of top predators and in turn deteriorate ecosystem functioning and food web stability.  相似文献   

16.
17.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

18.
We attached accelerometers to the head and jaw of a Steller sea lion (Eumetopias jubatus) to determine whether feeding attempts in a controlled setting could be quantified by acceleration features characteristic of head and jaw movements. Most of the 19 experimental feeding events that occurred during the 51 dives recorded resulted in specific acceleration patterns that were clearly distinguishable from swimming accelerations. The differential acceleration between the head-mounted and jaw-mounted accelerometers detected 84% of prey captures on the vertical axis and 89% on the horizontal axis. However, the jaw-mounted accelerometer alone proved to be equally effective at detecting prey capture attempts. Acceleration along the horizontal (surge)-axis appeared to be particularly efficient in detecting prey captures, and suggests that a single accelerometer placed under the jaw of a pinniped is a promising and easily implemented means of recording prey capture attempts.  相似文献   

19.
Intraguild predation (IGP) has been increasingly recognized as an important interaction in ecological systems over the past two decades, and remarkable insights have been gained into its nature and prevalence. We have developed a technique using molecular gut-content analysis to compare the rate of IGP between closely related species of coccinellid beetles (lady beetles or ladybirds), which had been previously known to prey upon one another. We first developed PCR primers for each of four lady beetle species: Harmonia axyridis, Coccinella septempunctata, Coleomegilla maculata and Propylea quatuordecimpunctata. We next determined the prey DNA detection success over time (DS(50) ) for each combination of interacting species following a meal. We found that DS(50) values varied greatly between predator-prey combinations, ranging from 5.2 to 19.3 h. As a result, general patterns of detection times based upon predator or prey species alone are not discernable. We used the DS(50) values to correct field data to demonstrate the importance of compensation for detection times that are specific to particular predator-prey combinations.  相似文献   

20.
Bacterial Predator-Prey Interaction at Low Prey Density   总被引:3,自引:3,他引:0       下载免费PDF全文
A bacterial predator-prey interaction was studied using Bdellovibrio and bioluminescent prey bacteria. The attacking bdellovibrio causes decay of bioluminescence, which is correlated with bdellovibrio penetration into the prey. The behavior of the prey and predator populations over time was found to be well described by a Lotka-Volterra model. By using this model, the probability of bdellovibrio penetration after encountering a prey cell was found to be approximately 3.0%. The prey density required to give the bdellovibrios a 50% chance of survival was calculated to be at least 3.0 × 106 cells per ml, and the density required for population equilibria was calculated to be about 7 × 105 prey bacteria per ml. These values, not generally characteristic of natural habitats, suggest that the existence of Bdellovibrio in nature is limited to special ecological niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号