首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D H Nies 《Journal of bacteriology》1992,174(24):8102-8110
The czcR gene, one of the two control genes responsible for induction of resistance to Co2+, Zn2+, and Cd2+ (czc system) in the Alcaligenes eutrophus plasmid pMOL30, was cloned and characterized. The 1,376-bp sequence upstream of the czcCBAD structural genes encodes a 41.4-kDa protein, the czcR gene product, transcribed in the opposite direction of that of the czcCBAD genes. The putative CzcR polypeptide (355 amino acid residues) contains 11 cysteine and 14 histidine residues which might form metal cation-binding sites. A czcC::lacZ reporter gene translational fusion was constructed, inserted into plasmid pMOL30 in A. eutrophus, and expressed under the control of CzcR. Zn2+, Co2+, and Cd2+, as well as Ni2+, Cu2+, Hg2+, and Mn2+ and even Al3+, served as inducers of beta-galactosidase activity. Besides the CzcR protein, the membrane-bound CzcD protein was essential for induction of czc. The CzcR and CzcD proteins display no sequence similarity to two-component regulatory systems of a sensor and a response activator type; however, CzcD has 34% identity with the ZRC-1 protein, which mediates zinc resistance in Saccharomyces cerevisiae (A. Kamizomo, M. Nishizawa, Y. Teranishi, K. Murata, and A. Kimura, Mol. Gen. Genet. 219:161-167, 1989).  相似文献   

2.
CzcE is encoded by the most distal gene of the czc determinant that allows Cupriavidus metallidurans CH34 to modulate its internal concentrations of cobalt, zinc and cadmium by regulation of the expression of the efflux pump CzcCBA. We have overproduced and purified CzcE. CzcE is a periplasm-located dimeric protein able to bind specifically 4 Cu-equivalent per dimer. Spectrophotometry and EPR are indicative of type II copper with typical d-d transitions. Re-oxidation of fully reduced CzcE led to the formation of an air stable semi-reduced form binding both 2 Cu(I) and 2 Cu(II) ions. The spectroscopic characteristics of the semi-reduced form are different of those of the oxidized one, suggesting a change in the environment of Cu(II).  相似文献   

3.
The opportunistic pathogen Pseudomonas aeruginosa responds to zinc, cadmium and cobalt by way of the CzcRS two-component system. In presence of these metals the regulatory protein CzcR induces the expression of the CzcCBA efflux pump, expelling and thereby inducing resistance to Zn, Cd and Co. Importantly, CzcR co-regulates carbapenem antibiotic resistance by repressing the expression of the OprD porin, the route of entry for these antibiotics. This unexpected co-regulation led us to address the role of CzcR in other cellular processes unrelated to the metal response. We found that CzcR affected the expression of numerous genes directly involved in the virulence of P. aeruginosa even in the absence of the inducible metals. Notably the full expression of quorum sensing 3-oxo-C12-HSL and C4-HSL autoinducer molecules is impaired in the absence of CzcR. In agreement with this, the virulence of the czcRS deletion mutant is affected in a C. elegans animal killing assay. Additionally, chromosome immunoprecipitation experiments allowed us to localize CzcR on the promoter of several regulated genes, suggesting a direct control of target genes such as oprD, phzA1 and lasI. All together our data identify CzcR as a novel regulator involved in the control of several key genes for P. aeruginosa virulence processes.  相似文献   

4.
Many proteins located in the intermembrane space (IMS) of mitochondria are characterized by a low molecular mass, contain highly conserved cysteine residues and coordinate metal ions. Studies on one of these proteins, Tim13, revealed that net translocation across the outer membrane is driven by metal-dependent folding in the IMS . We have identified an essential component, Mia40/Tim40/Ykl195w, with a highly conserved domain in the IMS that is able to bind zinc and copper ions. In cells lacking Mia40, the endogenous levels of Tim13 and other metal-binding IMS proteins are strongly reduced due to the impaired import of these proteins. Furthermore, Mia40 directly interacts with newly imported Tim13 protein. We conclude that Mia40 is the first essential component of a specific translocation pathway of metal-binding IMS proteins.  相似文献   

5.
Bacterial response to metals can require complex regulation. We report an overlapping regulation for copper and zinc resistance genes in the denitrifying bacterium, Pseudomonas stutzeri RCH2, by three two‐component regulatory proteins CopR1, CopR2 and CzcR. We conducted genome‐wide evaluations to identify gene targets of two paralogous regulators, CopR1 and CopR2, annotated for copper signaling, and compared the results with the gene targets for CzcR, implicated in zinc signaling. We discovered that the CopRs and CzcR have largely common targets, and crossregulate a core set of P. stutzeri copper and zinc responsive genes. We established that this crossregulation is enabled by a conserved binding motif in the upstream regulatory regions of the target genes. The crossregulation is physiologically relevant as these regulators synergistically and antagonistically target multicopper oxidases, metal efflux and sequestration systems. CopR1 and CopR2 upregulate two cop operons encoding copper tolerance genes, while all three regulators downregulate a putative copper chaperone, Psest_1595. CzcR also upregulated the oprD gene and the CzcIABC Zn2+ efflux system, while CopR1 and CopR2 downregulated these genes. Our study suggests that crossregulation of copper and zinc homeostasis can be advantageous, and in P. stutzeri this is enabled by shared binding motifs for multiple response regulators.  相似文献   

6.
CzcD from Ralstonia metallidurans and ZitB from Escherichia coli are prototypes of bacterial members of the cation diffusion facilitator (CDF) protein family. Expression of the czcD gene in an E. coli mutant strain devoid of zitB and the gene for the zinc-transporting P-type ATPase zntA rendered this strain more zinc resistant and caused decreased accumulation of zinc. CzcD, purified as an amino-terminal streptavidin-tagged protein, bound Zn2+, Co2+, Cu2+, and Ni2+ but not Mg2+, Mn2+, or Cd2+, as shown by metal affinity chromatography. Histidine residues were involved in the binding of 2 to 3 mol of Zn2+ per mol of CzcD. ZitB transported 65Zn2+ in the presence of NADH into everted membrane vesicles with an apparent Km of 1.4 microM and a Vmax of 0.57 nmol of Zn2+ min(-1) mg of protein(-1). Conserved amino acyl residues that might be involved in binding and transport of zinc were mutated in CzcD and/or ZitB, and the influence on Zn2+ resistance was studied. Charged or polar amino acyl residues that were located within or adjacent to membrane-spanning regions of the proteins were essential for the full function of the proteins. Probably, these amino acyl residues constituted a pathway required for export of the heavy metal cations or for import of counter-flowing protons.  相似文献   

7.
Many bacteria use an ABC transporter for high-affinity uptake of zinc with a cluster 9 solute-binding protein. Other members of this protein family transport manganese. At present, it is not always possible to distinguish zinc-specific and manganese-specific transporters on the basis of sequence analysis. Low-affinity ZIP-type zinc transporters in bacteria have also been identified. Most high-affinity zinc uptake systems are regulated by Zur proteins, which form at least three unrelated subgroups of the Fur protein family (regulators of iron transport). High-affinity transport of zinc out of the periplasmic space poses a problem to the cell because zinc is a cofactor of several periplasmic enzymes. Certain zinc-binding proteins in the periplasm might function as chaperones to supply these enzymes with zinc.  相似文献   

8.
9.
10.
11.
12.
Goyal K  Mande SC 《Proteins》2008,70(4):1206-1218
High throughput structural genomics efforts have been making the structures of proteins available even before their function has been fully characterized. Therefore, methods that exploit the structural knowledge to provide evidence about the functions of proteins would be useful. Such methods would be needed to complement the sequence-based function annotation approaches. The current study describes generation of 3D-structural motifs for metal-binding sites from the known metalloproteins. It then scans all the available protein structures in the PDB database for putative metal-binding sites. Our analysis predicted more than 1000 novel metal-binding sites in proteins using three-residue templates, and more than 150 novel metal-binding sites using four-residue templates. Prediction of metal-binding site in a yeast protein YDR533c led to the hypothesis that it might function as metal-dependent amidopeptidase. The structural motifs identified by our method present novel metal-binding sites that reveal newer mechanisms for a few well-known proteins.  相似文献   

13.
The sequence of six amino acid residues -Ser-Cys-Cys-Ser-Cys-Cys- is present in all mammalian metallothionein sequences and has been highly conserved during evolution, although the metallothioneins have divergent primary sequences. To determine whether two serines in the sequence play a crucial role in metalbinding of metallothioneins, a mutant metallothionein with these two serines replaced by leucines was obtained using anEscherichia coli expression system. The expressed protein was analyzed for its chemical and spectroscopic properties. It was confirmed that the mutant metallothionein (MT) bound cadmium through a metal-thiolate complex and that there was no strong difference between the mutant and the wild-type MTs in retaining the metal-binding cluster. However, the metal-binding cluster of the mutant metallothionein was more unstable than that of the wild-type metallothionein. The two conservative serines could play a role in the stability of metal-binding ligands.  相似文献   

14.
The Escherichia coli periplasmic proteins CusF and CusB, as part of the CusCFBA efflux system, aid in the resistance of elevated levels of copper and silver by direct metal transfer between the metallochaperone CusF and the membrane fusion protein CusB before metal extrusion from the periplasm to the extracellular space. Although previous in vitro experiments have demonstrated highly specific interactions between CusF and CusB that are crucial for metal transfer to occur, the structural details of the interaction have not been determined. Here, the interactions between CusF and CusB are mapped through nuclear magnetic resonance (NMR) spectroscopy and chemical cross-linking coupled with high-resolution mass spectrometry to better understand how recognition and metal transfer occur between these proteins. The NMR (1)H-(15)N correlation spectra reveal that CusB interacts with the metal-binding face of CusF. In vitro chemical cross-linking with a 7.7 ? homobifunctional amine-reactive cross-linker, BS(2)G, was used to capture the CusF/CusB interaction site, and mass spectral data acquired on an LTQ-Orbitrap confirm the following two cross-links: CusF K31 to CusB K29 and CusF K58 to CusB K32, thus revealing that the N-terminal region of CusB interacts with the metal-binding face of CusF. The proteins transiently interact in a metal-dependent fashion, and contacts between CusF and CusB are localized to regions near their respective metal-binding sites.  相似文献   

15.
C Rensing  T Pribyl    D H Nies 《Journal of bacteriology》1997,179(22):6871-6879
The membrane-bound CzcCBA protein complex mediates heavy metal resistance in Alcaligenes eutrophus by an active cation efflux mechanism driven by cation-proton antiport. The CzcA protein alone is able to mediate weak resistance to zinc and cobalt and is thus the central antiporter subunit. The two histidine-rich motifs in the CzcB subunit are not essential for zinc resistance; however, deletion of both motifs led to a small but significant loss of resistance to this cation. Translation of the czcC gene encoding the third subunit of the CzcCBA complex starts earlier than predicted, and CzcC is probably a periplasmic protein, as judged by the appearance of two bands after expression of czcC in Escherichia coli under control of the phage T7 promoter. Fusions of CzcC and CzcB with alkaline phosphatase and beta-galactosidase are in agreement with a periplasmic location of most parts of both proteins. Both CzcC and CzcB are bound to a membrane, probably the outer membrane, by themselves and do not need either CzcA or each other as an anchoring protein. Based on these data, a new working model for the function of the Czc system is discussed.  相似文献   

16.
Summary The glutamine permease operon encoding the high-affinity transport system of glutamine in Escherichia coli could be cloned in one of the mini F plasmids, but not in pBR322 or pACYC184, by selection for restoration of the Gln+ phenotype, the ability to utilize glutamine as a sole carbon source. We determined the nucleotide sequence of the glutamine permease operon, which contains the structural gene of the periplasmic glutamine-binding protein (glnH), an indispensable component of the permease activity. The N-terminal amino acid sequence and the overall amino acid composition of the purified glutamine-binding protein were in good agreement with those predicted from the nucleotide sequence, if the N-terminal 22 amino acid residues were discounted. The latter comprised two Lys residues (nos. 2 and 6) followed by 16 hydrophobic amino acid residues and was assumed to be a signal peptide for transport into the periplasmic space. There were two additional reading frames (glnP and glnQ) downstream of glnH sharing a common promoter. It was concluded that the glnP and glnQ proteins as well as the glnH protein are essential for glutamine permease activity.  相似文献   

17.
The HtrA protein of Escherichia coli is a heat-shock inducible periplasmic protease, essential for bacterial survival at high temperatures. Expression of htrA gene depends on the alternative factor sigmaE and on the two-component regulatory system Cpx. These regulators systems respond, among others factors, to overproduction of misfolded proteins in the periplasm or to high level synthesis of various extracytoplasmic proteins. We describe in this report the osmoregulation of the expression of htrA gene. Low osmolarity conditions result in htrA repression. We report, as well, the role of the nucleoid associated proteins H-NS and Hha in the repression of htrA expression at low osmolarity.  相似文献   

18.
19.
20.
A significant role of zinc-binding motifs on metal mobility in Escherichia coli was explored using a chimeric metal-binding green fluorescent protein (GFP) as an intracellular zinc indicator. Investigation was initiated by co-transformation and co-expression of two chimeric genes encoding the chimeric GFP carrying hexahistidine (His6GFP) and the zinc-binding motif fused to outer membrane protein A (OmpA) in E. coli strain TG1. The presence of these two genes was confirmed by restriction endonucleases analysis. Co-expression of the two recombinant proteins exhibited cellular fluorescence activity and enhanced metal-binding capability of the engineered cells. Incorporation of the zinc-binding motif onto the membrane resulted in 60-fold more binding capability to zinc ions than those of the control cells. The high affinity to metal ions of the bacterial surface influenced influx of metal ions to the cells. This may affect the essential ions for triggering important cell metabolism. A declining of fluorescent intensity of GFP has been detected on the cell expressed of zinc binding motif. Meanwhile, balancing of metal homeostasis due to the presence of cytoplasmic chimeric His6GFP enhanced the fluorescent emission. These findings provide the first evidence of real-time monitoring of intracellular mobility of zinc by autofluorescent proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号