首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nostoc flagelliforme was cultivated on three solid bed-materials which have different wettability. The results show that the wettability of solid bed-materials is very important to the need for water in N. flagelliforme, and also greatly affects photosynthetic activity, polysaccharide secretion and the morphology of the cells. Glass residue has the best wettability, followed by sand, and then nylon6 (PA6). We show that only sand is suitable for the growth of N. flagelliforme. When cultivated on sand for 100 days, the cells maintained a typical rosary-like shape. On glass residue, two to three vegetative cells formed a group with slime. On PA6, cells were in the form of loose group with slimes. N. flagelliforme is applicable to desert control as it cannot only grow on the sand, but also adhere to sand to form a biological crust.  相似文献   

2.
Nostoc flagelliforme, which is distributed on arid and semi-arid steppes of northwestern parts of China, has attracted increasing interest for its stress tolerance. In order to gain more insight into the genetic background of N. flagelliforme, we sequenced its partial genomic DNA for similarity analyses against current public databases, followed by phylogenetic comparison of N. flagelliforme and the potentially related species deduced from the similarity analyses. Approximately 430 kb genomic sequence (~5% of genome as a rough estimate) was determined from 106 distinct genomic clones. Nucleotide BLAST showed that ~23.1% of the partial genomic sequence was similar to N. punctiforme genomic DNA and ~12.4% to its plasmid DNA. Similar protein search by online FASTA-protein program showed 46.2% of the similar proteins had their corresponding orthologs in N. punctiforme genome. Furthermore, phylogenetic comparison based on 16S rRNA sequences showed N. flagelliforme and N. punctiforme clustered closer among the deduced related species. These results indicated that N. punctiforme might also be potentially close neighbor species of N. flagelliforme, in addition to the formerly regarded close neighbor species N. commune and N. sphaeroids. In general, these data enriched our recognition of the evolutionary relationship between N. flagelliforme and other Nostoc species, especially N. punctiforme.  相似文献   

3.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

4.
Nostoc flagelliforme is well known for its strong ecological adaptability in inhabiting desert biological soil crusts. However, the mechanism of its recovery from quiescent to active state after prolonged dormancy remains poorly characterized. Especially how exoproteome be related to the adaptive strategies and participate in the microalgae-bacteria interaction. In the present work, we analysed the intra- and extra-cellular proteome of N. flagelliforme over a complete rehydration period both in sterilization and in natural condition for the first time. The protein expression profile for N. flagelliforme has more fluctuations during the first 1 h after wetting but been relatively steady after fully hydrated. According to the extracellular proteomic datasets, we found a dynamic secretion of various extracellular hydrolytic enzymes and membrane transport proteins, which were related to peptidoglycan digestion and nutrient exchange respectively. Two-hundred and thirteen differentially expressed proteins induced by sterilization also reflect variation in nutrient exchange and highlight symbiosis between N. flagelliforme and surrounding bacteria. We also identified 112 phosphopeptides and 217 phosphorylation site of 95 protein of hydrated N. flagelliforme. The time course datasets we present here will be a reference for understanding the molecular processes underlying N. flagelliforme resuscitation and its potential role in microbial community diversification and soil desertification control.  相似文献   

5.
Nostoc flagelliforme cells were studied with regard to the physico-chemical characterization of the extracellular polysaccharides (EPS) secreted in a liquid suspension culture. The hydrolyzed EPS were determined to be composed of four neutral sugars, which were glucose (43.2%), xylose (20.6%), galactose (29.9%), and mannose (6.3%). The glucuronic acid was the only uronic acid identified in the residue. The apparent molecular weight was estimated at 2.79×105. The Fourier transform infrared spectra showed that the EPS evidenced characteristics typical of non-sulfated polysaccharides. The UV spectrum and Bradford reaction indicated that there were no nucleic acids and proteins in them. The thermal analysis showed a decomposition peak at 245°C on the thermogravimetric (TG) curves. The scanning electron microscope (SEM) analysis indicated that the EPS possessed a porous structure. The observed microstructural irregularities indicated that the polysaccharide was a type of amorphous solid. These results showed that the EPS ofN. flagelliforme cells might be ernployed as a substitute for those normally derived from field colonies. The results of this study may prove to be beneficial to the protection of the natural resource represented byN. flagelliforme.  相似文献   

6.
The growth of an individual thallus of the brown alga Laminaria japonica was studied in a laboratory environment. It was found that daily accretion of the Laminaria thallus can remain constant for a long time. The blade grew in length at a distance from 0 to 15–25 cm from the stipe-blade border, which makes up 60% of the blade length. In width, the blade grew both in the central and in the lateral parts of the blade, 0 to 7–10 cm from the stipe-blade border, which makes up 30% of the frond length. The transposition of a perforation hole mark from the stipe-blade border toward the blade tip evidenced the formation of new tissue in the growth zone even when the thallus diminished in size due to destruction of the blade tip. Based on the results of this observation, it was concluded that both restraint of accumulation and even reduction of the algal thallus in biomass and size cannot be taken as an indication of algal growth cessation.Original Russian Text Copyright ¢ 2005 by Biologiya Morya, Skriptsova, Leletkin.  相似文献   

7.
Noscoc flagelliforme is a terrestrial macroscopic cyanobacterium with high economic value. Free-living cells that were separated from a natural colony of N. flagelliforme were cultivated in a 20-L photobioreactor for 16 days at five agitation rates with impeller tip speeds at 0.3, 0., 0.8, 1.0, and 1.5 m·s−1. With different impeller tip speeds there were significant differences in the cell growth and polysaccharide production, and different types of cell colonies appeared because of different shear forces caused by agitation. At harvest time, cell concentrations with tip speeds of 0.8 and 1.0 m·s−1 were clearly higher than those with the other three tip speeds, but dry cell weights with the tip speeds of 0.3, 0.5, 0.8, and 1.0 m·s−1 were almost the same. The highest RPS (polysaccharide that released into liquid medium) production was obtained with the tip speeds of 0.8 and 1.0 m·s−1, while the highest EPS (polysaccharide that formed capsule or slime layer) production was obtained with the tip speed of 0.5 m·s−1. The tip speed of 1.5 m·s−1 was harmful for both cell growth and polysaccharide production, indicating that an appropriate shear force was needed in the liquid suspension culture of N. flagelliforme.  相似文献   

8.
Effects of ammonium on the photosynthetic recovery of Nostoc flagelliforme Berk. et M. A. Curtis were assayed when being rehydrated in low‐K+ or high‐K+ medium. Its photosynthetic recovery was K+ limited after 3 years of dry storage. The potassium absorption of N. flagelliforme reached the maximum after 3 h rehydration in low‐K+ medium but at 5 min in high‐K+ medium. The K+ content of N. flagelliforme rehydrated in high‐K+ medium was much higher than that in low‐K+ medium. The maximal PSII quantum yield (Fv/Fm) value of N. flagelliforme decreased significantly when samples were rehydrated in low‐K+ medium treated with 5 mM NH4Cl. However, the treatment of 20 mM NH4Cl had little effect on its Fv/Fm value in high‐K+ medium. The relative Fv/Fm 24 h EC50 (concentration at which 50% inhibition occurred) value of NH4+ in high‐K+ medium (64.35 mM) was much higher than that in low‐K+ medium (22.17 mM). This finding indicated that high K+ could alleviate the inhibitory action of NH4+ upon the photosynthetic recovery of N. flagelliforme during rehydration. In the presence of 10 mM tetraethylammonium chloride (TEACl), the relative Fv/Fm 24 h EC50 value of NH4+ was increased to 46.34 and 70.78 mM, respectively, in low‐K+ and high‐K+ media. This observation suggested that NH4+ entered into N. flagelliforme cells via the K+ channel. Furthermore, NH4+ could decrease K+ absorption in high‐K+ medium.  相似文献   

9.
Nostoc flagelliforme, a terrestrial cyanobacterium spread throughout arid and semi-arid areas, has been long known for its outstanding adaptability to extremely dry conditions. This microorganism is able to recover biological activities within hours after months of anhydrobiosis state, attracting investigation through proteomic analysis. Except for canonical proteome, microproteins encoded by small ORFs (smORFs) have recently been regarded as indispensable participants in metabolic processes. However, the involvement of smORFs in N. flagelliforme remains unknown. Here we first constructed a smORF database in N. flagelliforme using bioinformatic prediction, resulting in 6072 novel smORFs. Then LS-MS/MS analysis was applied to identify expression patterns of microproteins and seek smORFs and their encoded microprotein playing a role during rehydration. In total, 18 novel microproteins were mined based on a smORF searching strategy combined with three proteomic assays, of which five were annotated as ribosomal proteins, one as RNA polymerase subunit, and one as acetohydroxy acid isomeroreductase. We also suggested the possible functions of smORFs according to their expression pattern and discovered two neighboring and homologous smORFs. All these results will expand our knowledge of smORFs-encoded microproteins and their relation to the stress response of extremophilic microorganisms.  相似文献   

10.
生物结皮粗糙特征——以古尔班通古特沙漠为例   总被引:1,自引:0,他引:1  
王雪芹  张元明  张伟民  杨东亮 《生态学报》2011,31(14):4153-4160
摘要:空气动力粗糙度可以反映地表气流与下垫面的相互作用。古尔班通古特沙漠是我国最大的固定、半固定沙漠,其间广泛分布的生物结皮在稳定地表和改善环境方面意义重大。对未经扰动的4种类型生物结皮进行表面微形态观察,并通过风洞实验确定动力粗糙度Z0和摩阻风速u*,结果表明:(1)不同生物结皮类型,其组成和表面微形态等都具有明显差异。藻结皮以表面致密光滑为显著特征,由藻类分泌物和藻丝体粘结细粒物质所形成;地衣结皮表面藻类和真菌形成的叶状体匍匐沙面生长,呈现三维生长方式,形成有明显凹凸的壳状覆被;苔藓结皮以苔藓植物体密集丛生为特点,地上部分出现了茎叶分化,有一定的柔韧性。(2)就动力粗糙度的大小而言,是按地衣结皮>藻类-地衣结皮>苔藓结皮>藻结皮的顺序排列的,Z0平均值依次为(6.5890.850)mm、(4.1790.239)mm、(2.5420.357)mm和(0.3930.220)mm,与定床裸沙面的(0.0420.019)mm相比,生物结皮Z0值提高了10—150倍。随着风速的增大Z0值有所减小,其中以地衣结皮的减小趋势较为明显。(3)由风速廓线对比发现,四类生物结皮对气流阻滞作用的差异主要局限于4 cm以下的高度范围,风速越大这种差异也越大。各类生物结皮摩阻风速u*随风速增大而增大,其中藻结皮的增大速率明显低于其它三类结皮,说明藻结皮随风速增大的阻滞效应较其它三类结皮要差。(4)在净风条件下,地衣结皮具有最好的防风效果,其次为藻类-地衣结皮和苔藓结皮,藻结皮最差。当生物结皮破损后,床面结构和气流性质将发生变化,对空气动力学粗糙度和摩阻风速产生的影响将有待于进行更深入的研究。  相似文献   

11.
In this paper, chlorophytes collected from 253 biological soil crust samples in Gurbantunggut Desert in Xinjiang Autonomous Region, China were studied by field investigation and microscopical observation in lab. The flora composition, ecological distribution of chlorophytes in the desert and dynamic changes of species composition of chlorophytes in different developing stages of biological soil crusts are preliminarily analyzed. Results showed that there were 26 species belonging to 14 genera and 10 families, in which unicellular chlorophytes were dominant. There existed some differences in distribution of varied sand dune positions. The taxa of chlorophytes in leeward of sand dunes are most abundant, but the taxa in windward, interdune and the top of sand dunes reduced gradually. Chlorophytes were mainly distributed within the crust and the taxa of chlorophytes decrease obviously under the crust. In the developing stages of the biological soil crust, species diversity of chlorophytes changed a little, but species composition presented some differences. Chlorococcum humicola, Chlorella vulgaris, Chlamydomonas ovalis and Chlamydomonas sp. nearly existed in all developing stages of biological crusts. In several former stages of the biological soil crust there were spherical chlorophytes and filamentous ones. When moss crust formed, filamentous chlorophytes disappeared, such as Microspora and Ulothrix. __________ Translated from Arid Zone Research, 2006, 23(2): 189–193 [译自: 干旱区研究]  相似文献   

12.
13.
The chlorophyte Ulva is perceived as a simple and uniform algal form, with little functional differentiation within a thallus. We compared morphology, pigmentation, photosynthesis, growth, reproduction, and UV‐B sensitivity between different thallus regions of Ulva pertusa Kjellman. Thallus thickness and cell size were significantly greater, whereas cell number was less in the basal region than in other regions. Photosynthetic pigment contents were lowest in the basal region and increased toward the marginal region. Photosynthetic capacity and photosynthetic efficiency normalized to fresh weight, area, volume, and cell number showed a progressive increase from the basal to marginal parts; however, on a chl basis those values were equal regardless of thallus part. Values of light saturation point were not statistically different between regions. Growth rates increased from marginal to basal and to middle parts of the thallus, whereas sporulation was highest in marginal (100%) followed by middle (30%) and basal parts (0%). Daily observation over 9 days showed that 56% of the basal cells divided once and did not produce spores, whereas every marginal cell went through its first division and 89% of the primary daughter cells also divided, resulting in 100% sporulation. A 7‐day treatment with PAR and PAR + UV‐A caused a significant decrease in the effective quantum yield of all thallus regions, followed by a recovery toward the initial values, whereas PAR + UV‐A + UV‐B irradiation led to greater photoinhibition and less recovery. Marked differences in the UV‐B sensitivity were observed, with marginal parts being more sensitive and basal parts most resistant.  相似文献   

14.
The subaerial cyanobacterium Nostoc flagelliforme can survive for years in the desiccated state and light exposure may stimulate photosynthetic recovery during rehydration. However, the influence of light quality on photosynthetic recovery and the underlying mechanism remain unresolved. Exposure of field collected N. flagelliforme to light intensity ≥2 μmol photons m−2 s−1 showed that the speed of photosystem II (PSII) recovery was in the following order: red > green > blue ≈ violet light. Decreasing the light intensity showed that weak red light stimulated PSII recovery during rehydration. The chlorophyll fluorescence transient and oxygen evolution activity indicated that the oxygen evolution complex (OEC) was the activated site triggered by weak red light. The damaged D1 protein accumulated in the thylakoid membrane during dehydration and is degraded and resynthesized during dark rehydration. PsbO interaction with the thylakoid membrane was induced by weak red light. Thus, weak red light plays an important role in triggering OEC photoactivation and the formation of functional PSII during rehydration. In its arid habitats, weak red light could stimulate the awakening of dormant N. flagelliforme after absorbing water from nighttime dew or rain to maximize growth during the early daylight hours of the dry season.  相似文献   

15.
Algal cultivation is a potential candidate for CO2 mitigation. CO2 plays important roles in mass cultivation of algae, including supplying carbon source and adjusting medium pH. To assess the possibility of using edible cyanobacterium Nostoc flagelliforme as carbon storage device, the growth characteristics of N. flagelliforme batch cultured under elevated CO2 concentrations (0, 2.5, 5, 20, and 40%) were investigated in this study. Results showed that the net photosynthetic rate, efficiency and carbon sequestration rate at 20% CO2 were increased at a maximum of 121 μmol O2 (mg chla)?1 h?1 8.40% and 0.17 g CO2 L?1 day?1, and increased by 0.42, 1.03 and 1.13 folds compared with that of the control, respectively. Higher CO2 concentration resulted in the declines in photosynthetic rate, efficiency and carbon sequestration rate because of medium pH reduction. Accordingly, the dry cell weight, amount of exopolysaccharides and protein content of N. flagelliforme cells at 20% CO2 were obtained at a maximum of 1.45 g L?1, 54.98 mg L?1 and 57.75%, increased by 0.93, 0.29 and 0.8 folds compared with that of the control, respectively. These results provided important information for CO2 mitigation by N. flagelliforme and would shed more light on elucidating the mechanisms of CO2 tolerance in cyanobacterium.  相似文献   

16.
为科学评价植被恢复促进沙漠化逆转对碳氮储量的影响,以流动沙地、半固定沙地、油蒿固定沙地、柠条固定沙地、沙柳固定沙地5个阶段荒漠生态系统为研究对象,采用时空替代法分析植被恢复过程中荒漠生态系统碳氮储量及分配格局。结果表明:不同恢复阶段碳氮储量均表现为:流动沙地(3320.97 kg C/hm~2、346.69 kg N/hm~2)半固定沙地(4371.46 kg C/hm~2、435.95 kg N/hm~2)油蒿固定沙地(6096.50 kg C/hm~2、513.76 kg N/hm~2)柠条固定沙地(9556.80 kg C/hm~2、926.31 kg N/hm~2)沙柳固定沙地(19488.54 kg C/hm~2、982.11 kg N/hm~2)。植被层碳氮储量均呈现随植被恢复逐渐增加的趋势,除流动沙地外,其他阶段碳氮储量均以灌木层为主,占比分别为66.65%—91.41%和52.94%—93.39%,草本和凋落物占比较小。灌木各器官生物量及碳储量分配均为:茎根叶,氮储量分配无明显规律,草本各器官生物量及碳氮储量分配均为地上部分高于地下部分。土壤层是荒漠生态系统碳氮储量的主体,碳储量占比为68.64%—99.62%,氮储量占比为89.26%—99.89%,同样呈现随植被恢复逐渐增加的趋势。碳氮储量随土层加深逐渐降低,具有明显的表层富集特征,且随植被恢复过程富集性显著加强。这说明人工建植促进植被演替实现沙漠化逆转可以显著增强荒漠生态系统的碳氮固存能力。  相似文献   

17.
Summary The response of the terrestrial blue-green algae Nostoc flagelliforme, Nostoc commune, and Nostoc spec. to water uptake has been investigated after a drought period of approximately 2 years. Rapid half-times of rewetting (0.6, 3.3, and 15.5 min, respectively) are found. The surfaceto-mass ratio of the three species is inversely correlated to the speed of water uptake and loss. The ecological relevance of these different time courses is discussed.Respiration starts immediately after a 30-min rewetting period, whereas photosynthetic oxygen evolution reaches its maximum activity after 6 and 8 h with N. commune and N. flagelliforme, respectively. In the dark, recovery of oxygen uptake by N. commune is somewhat impaired, while slightly stimulated with N. flagelliforme. With both species, recovery of photosynthesis is inhibited by darkness.Using colonies kept dry for two years, nitrogenase activity of N. commune attains its maximum 120 to 150 h after rewetting, while only 50 h were needed with algal mats kept dry for two days.Thus, after a 2-year drought period, the physiological sequence of reactivation is respiration—photosynthesis—nitrogen fixation. Respiration and photosynthesis precede growth and are exhibited by existing vegetative cells, whereas recovery of nitrogen fixation is dependent on newly differentiated heterocysts.  相似文献   

18.
The development and release of the unique vegetative propagules of the freshwater encrusting alga Hildenbrandia angolensis Welwitsch ex West et West, gemmae, were studied using several different microscopic and histochemical techniques. In addition, the seasonality of gemma production was monitored bimonthly over a 12‐month period in two spring‐fed streams in Texas, USA. Gemmae differentiate within the thallus and are subsequently released from the surface of the crust. Release of the gemmae most likely occurs by digestion of surrounding cells, as suggested by the presence of starch granules and lipid globules in the region between the released gemma and the thallus. The initial separation of the gemmae from the thallus occurs from the sides of the gemma or the bottom, or possibly simultaneously. Contrary to previous studies, we have observed that gemma production occurs endogenously within the thallus of freshwater Hildenbrandia, rather than on the surface of the crust in raised structures. Histochemical tests and electron microscopic examination indicate that the cells of the gemmae contain a large amount of floridean starch. The starch granules frequently form rings surrounding the nuclei of both gemma and thallus cells; a feature infrequently reported for florideophyte red algae. Our seasonality investigations indicate that large fluctuations in gemma production occur over 1 year, but at least some gemma production continues year‐round in the streams examined.  相似文献   

19.
Anin vitro cytotoxicity screening of theTyphonium flagelliforme extracts indicated high cytotoxicity effect on human lung carcinoma NCl-H23 cells and human mammary gland carcinoma T-47D cells, but the extracts were not active on human liver carcinoma HepG2 cells. NCl-H23 cells were more susceptible toT. flagelliforme extracts than T-47D cells. EDP50 values of the hexane fractions of the mature plant and thein vitro plantlet ofT. flagelliforme on NCl-H23 cells were less than 2 μg/mL Extract from the mature plant was relatively more cytotoxic than the one fromin vitro plantlet except for the hexane fraction. The chloroform and butanol fraction of the mature plant had higher cytotoxicity effect than the fraction fromin vitro plantlet on NCl-H23 cells. All the 3 fractions (hexane, chloroform, and butanol) of the mature plant exhibited higher cytotoxicity effects on human mammary gland carcinoma T-47D cells than the 3 fractions ofin vitro plantlet. However, the human liver carcinoma cells were resistant toT. flagelliforme extracts except for higher concentration of hexane fractions of both the mature and thein vitro plants and the chloroform fraction of the mature plant. Micropropagated plantlets ofT. flagelliforme could hence be used as herbal materials for the treatment of human lung and breast cancers.  相似文献   

20.
该研究以不同失水处理的发菜为研究材料,以充分吸水状态的发菜为对照,利用高通量测序技术和qRT PCR技术检测了干旱胁迫下发菜光合作用相关基因差异表达规律,并对光合色素和酶活在干旱胁迫下的变化进行了研究。结果表明:(1)发菜在不同程度干旱胁迫下有113个光合作用相关基因差异表达,其中失水30%、75%和100%的发菜分别有44个、74个和91个光合作用相关基因差异表达。(2)随着干旱胁迫程度的加深藻胆素、叶绿素a和类胡萝卜素含量逐渐降低,Rubisco活性随着干旱胁迫程度的增强先上升后下降,GAPDH活性随着干旱胁迫的增强呈现下降的趋势。研究表明,发菜通过光合作用相关基因的差异表达调控光合作用以适应干旱胁迫。该研究结果对进一步研究发菜干旱胁迫响应机制及其耐旱光合机理奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号