首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative DNA base damage is mainly corrected by the base excision repair (BER) pathway, which can be divided into two subpathways depending on the length of the resynthetized patch, either one nucleotide for short patch BER or several nucleotides for long patch BER. The role of proteins in the course of BER processes has been investigated in vitro using purified enzymes and cell-free extracts. In this study, we have investigated the repair of 8-oxo-7,8-dihydroguanine (8-oxoG) in vivo using wild-type, polymerase beta(-/-) (Polbeta(-/-)), poly(ADP-ribose) polymerase-1(-/-) (PARP-1(-/-)), and Polbeta(-/-)PARP-1(-/-) 3T3 cell lines. We used non replicating plasmids containing a 8-oxoG:C base pair to study the repair of the lesion located in a transcribed sequence (TS) or in a non-transcribed sequence (NTS). The results show that 8-oxoG repair in TS is not significantly impaired in cells deficient in Polbeta or PARP-1 or both. Whereas 8-oxoG repair in NTS is normal in Polbeta-null cells, it is delayed in PARP-1-null cells and greatly impaired in cells deficient in both Polbeta and PARP-1. The removal of 8-oxoG and presumably the cleavage at the resulting apurinic/apyrimidinic site are not affected in the PARP-1(-/-)Polbeta(-/-) cell lines. However, 8-oxoG repair is incomplete, yielding plasmid molecules with a nick at the site of the lesion. Therefore, PARP-1(-/-)Polbeta(-/-) cell lines cannot perform 5'-dRP removal and/or DNA repair synthesis. Furthermore, the poly(ADP-ribosyl)ation activity of PARP-1 is essential for 8-oxoG repair in a Polbeta(-/-) context, because expression of the catalytically inactive PARP-1 (E988K) mutant does not restore 8-oxoG repair, whereas an wild type PARP-1 does.  相似文献   

2.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair in cells lacking PARP-1 in order to elucidate whether their augmented sensitivity to DNA damaging agents is due to an impairment of the base excision repair pathway. Extracts prepared from wild-type cells or cells lacking PARP-1 were similar in their ability to repair plasmid DNA damaged by either X-rays (single-strand DNA breaks) or by N-methyl-N′-nitro-N-nitrosoguanidine (methylated bases). In addition, we demonstrated in vivo that PARP-1-deficient cells treated with N-methyl-N′-nitro-N-nitrosoguanidine repaired their genomic DNA as efficiently as wild-type cells. Therefore, we conclude that cells lacking PARP-1 have a normal capacity to repair single-strand DNA breaks inflicted by X-irradiation or breaks formed during the repair of modified bases. We propose that the hypersensitivity of PARP-1 null mutant cells to γ-irradiation and alkylating agents is not directly due to a defect in DNA repair itself, but rather results from greatly reduced poly(ADP-ribose) formation during base excision repair in these cells.  相似文献   

3.
The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, isogenic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway. PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1(KD) and XRCC1(KD) cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1(KD) cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity.  相似文献   

4.
Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) acts as a DNA damage sensor. It recognizes DNA damage and facilitates DNA repair by recruiting DNA repair machinery to damage sites. Recent studies reported that PARP-1 also plays an important role in DNA replication by recognizing the unligated Okazaki fragments and controlling the speed of fork elongation. On the other hand, emerging evidence reveals that excessive activation of PARP-1 causes chromatin DNA fragmentation and triggers an intrinsic PARP-1-dependent cell death program designated parthanatos, which can be blocked by genetic deletion or pharmacological inhibition of PARP-1. Therefore, PARP-1 plays an essential role in maintaining genomic stability by either facilitating DNA repair/replication or triggering DNA fragmentation to kill cells. A group of structure-specific nucleases is crucial for executing DNA incision and fragmentation following PARP-1 activation. In this review, we will discuss how PARP-1 coordinates with its associated nucleases to maintain genomic integrity and control the decision of cell life and death.  相似文献   

5.
Although poly(ADP-ribose) polymerase-1 (PARP-1) has no enzymatic activity involved in DNA damage processing by the base excision repair (BER) pathway, PARP-1 deficient cells are genetically unstable and sensitive to DNA-damaging agents. To explain this paradox, we investigated the impact of PARP-1 on BER in mammalian cells. We reduced cellular PARP-1 protein levels using siRNA, then introduced DNA damage by hydrogen peroxide treatment and examined the repair response. We find that PARP-1 is not involved in recruitment of the major BER proteins to sites of DNA damage. However, we find that PARP-1 protects excessive DNA single strand breaks (SSBs) from converting into DNA double strand breaks (DSBs) thus preserving them for subsequent repair by BER enzymes. This suggests that PARP-1 plays an important role in BER by extending the ability of BER enzymes to process DNA single strand breaks arising directly after mutagen stress or during processing of DNA lesions following extensive DNA damage.  相似文献   

6.
Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts.  相似文献   

7.
The functional involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in the repair of DNA single- and double-strand breaks, DNA base damage, and related repair substrate intermediates remains unclear. Using an in vitro DNA repair assay and cell extracts derived from PARP-1 deficient or wild-type murine embryonic fibroblasts, we investigated the DNA synthesis and ligation steps associated with the rejoining of DNA single-strand interruptions containing 3'-OH, and either 5'-OH or 5'-P termini. Complete repair leading to DNA rejoining was similar between PARP-1 deficient cells and wild-type controls and poly(ADP-ribose) synthesis was, as expected, greatly reduced in PARP-1 deficient cell extracts. The incorporation of [32P]dCMP into repaired DNA at the site of a lesion was reduced two-three-fold in PARP-1 deficient cell extracts, demonstrating a decrease in repair patch size. Addition of purified PARP-1 to levels approximating those present in wild-type extracts did not stimulate DNA repair synthesis. We conclude that PARP-1 is not required for the efficient processing and rejoining of single-strand interruptions with defined 3'-OH and 5'-OH or 5'-P termini. Decreased DNA repair synthesis observed in PARP-1 deficient cell extracts is associated with reduced cellular expression of several factors required for long-patch base excision repair (BER), including FEN-1 and DNA ligase I.  相似文献   

8.
Base excision repair (BER), a major pathway for the removal of simple lesions in DNA, requires the co-ordinated action of several repair and ancillary proteins, the impairment of which can lead to genetic instability. We here address the role of poly(ADP-ribose) polymerase-1 (PARP-1) in BER. Using an in vitro cross-linking assay, we reveal that PARP-1 is always involved in repair of a uracil-containing oligonucleotide and that it binds to the damaged DNA during the early stages of repair. Inhibition of PARP-1 poly(ADP-ribosyl)ation by 3-aminobenzamide blocks dissociation of PARP-1 from damaged DNA and prevents further repair. We find that excessive poly(ADP-ribosyl)ation occurs when repair intermediates containing single-strand breaks are in excess of the repair capacity of the cell extract, suggesting that repeated binding of PARP-1 to the nicked DNA occurs. We also find increased sensitivity of repair intermediates to nuclease cleavage in PARP-deficient mouse fibroblasts and after depletion of PARP-1 from HeLa whole cell extracts. Our data support the model in which PARP-1 binding to DNA single-strand breaks or repair intermediates plays a protective role when repair is limited.  相似文献   

9.
Affinity maturation of antibodies requires a unique process of targeted mutation that allows changes to accumulate in the antibody genes while the rest of the genome is protected from off-target mutations that can be oncogenic. This targeting requires that the same deamination event be repaired either by a mutagenic or a high-fidelity pathway depending on the genomic location. We have previously shown that the BRCT domain of the DNA-damage sensor PARP-1 is required for mutagenic repair occurring in the context of IgH and IgL diversification in the chicken B cell line DT40. Here we show that immunoprecipitation of the BRCT domain of PARP-1 pulls down Ku70 and the DNA-PK complex although the BRCT domain of PARP-1 does not bind DNA, suggesting that this interaction is not DNA dependent. Through sequencing the IgL variable region in PARP-1(-/-) cells that also lack Ku70 or Lig4, we show that Ku70 or Lig4 deficiency restores GCV to PARP-1(-/-) cells and conclude that the mechanism by which PARP-1 is promoting mutagenic repair is by inhibiting high-fidelity repair which would otherwise be mediated by Ku70 and Lig4.  相似文献   

10.
PARP-1, PARP-2 and PARP-3 are DNA-dependent PARPs that localize to DNA damage, synthesize poly(ADP-ribose) (PAR) covalently attached to target proteins including themselves, and thereby recruit repair factors to DNA breaks to increase repair efficiency. PARP-1, PARP-2 and PARP-3 have in common two C-terminal domains—Trp-Gly-Arg (WGR) and catalytic (CAT). In contrast, the N-terminal region (NTR) of PARP-1 is over 500 residues and includes four regulatory domains, whereas PARP-2 and PARP-3 have smaller NTRs (70 and 40 residues, respectively) of unknown structural composition and function. Here, we show that PARP-2 and PARP-3 are preferentially activated by DNA breaks harboring a 5′ phosphate (5′P), suggesting selective activation in response to specific DNA repair intermediates, in particular structures that are competent for DNA ligation. In contrast to PARP-1, the NTRs of PARP-2 and PARP-3 are not strictly required for DNA binding or for DNA-dependent activation. Rather, the WGR domain is the central regulatory domain of PARP-2 and PARP-3. Finally, PARP-1, PARP-2 and PARP-3 share an allosteric regulatory mechanism of DNA-dependent catalytic activation through a local destabilization of the CAT. Collectively, our study provides new insights into the specialization of the DNA-dependent PARPs and their specific roles in DNA repair pathways.  相似文献   

11.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   

12.
In mammalian cells, damaged bases in DNA are corrected by the base excision repair pathway which is divided into two distinct pathways depending on the length of the resynthesized patch, replacement of one nucleotide for short-patch repair, and resynthesis of several nucleotides for long-patch repair. The involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in both pathways has been investigated by using PARP-1-deficient cell extracts to repair single abasic sites derived from uracil or 8-oxoguanine located in a double-stranded circular plasmid. For both lesions, PARP-1-deficient cell extracts were about half as efficient as wild-type cells at the polymerization step of the short-patch repair synthesis, but were highly inefficient at the long-patch repair. We provided evidence that PARP-1 constitutively interacts with DNA polymerase beta. Using cell-free extracts from mouse embryonic cells deficient in DNA polymerase beta, we demonstrated that DNA polymerase beta is involved in the repair of uracil-derived AP sites via both the short and the long-patch repair pathways. When both PARP-1 and DNA polymerase beta were absent, the two repair pathways were dramatically affected, indicating that base excision repair was highly inefficient. These results show that PARP-1 is an active player in DNA base excision repair.  相似文献   

13.
Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in multi-pathways to respond to DNA damage. Lack of or inhibition of PARP-1 activity leads to slow progress of cell cycle and sensitization of cells to different stresses. Recently, it was reported that besides the Ku- dependent main non-homologous end joining (NHEJ) pathway, there is a PARP-1-dependent complementary NHEJ pathway to repair DNA double strand break (DSB). Here we show that compared with PARP-1+/+ cells, PARP-1-/- cells display a much stronger G2 checkpoint response following ionizing radiation (IR). Treatment with Chk1 siRNA abolishes the stronger G2 checkpoint response and sensitizes PARP-1-/- cells to IR. These data indicate that the stronger G2 checkpoint response in PARP-1-/- cells is CHK1-dependent, which protects cells from IR-induced killing. We also show that 4-Amino-1,8-naphthalimide (4-AN, inhibitor of PARP) but not methoxyamine (inhibitor of base excision repair (BER)), affects IR-induced G2 arrest and cell sensitivity in PARP-1+/+ cells, resulting in the phenotypes similar to those of PARP-1-/- cells. These results indicate that DSB repair from the complementary NHEJ pathway of PARP-1, but not single strand break (SSB) repair from the BER function of PARP-1, may play an essential role in the over-activated CHK1 regulated G2 checkpoint response and radiosensitivity in PARP-1-/- cells.  相似文献   

14.
The efficient repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity. In mammalian cells, the nonhomologous end-joining process that represents the predominant repair pathway relies on the DNA-dependent protein kinase (DNA-PK) and the XRCC4-DNA ligase IV complex. Nonetheless, several in vitro and in vivo results indicate that mammalian cells use more than a single end-joining mechanism. While searching for a DNA-PK-independent end-joining activity, we found that the pretreatment of DNA-PK-proficient and -deficient rodent cells with an inhibitor of the poly(ADP-ribose) polymerase-1 enzyme (PARP-1) led to increased cytotoxicity of the highly efficient DNA double-strand breaking compound calicheamicin gamma1. In addition, the repair kinetics of the DSBs induced by calicheamicin gamma1 was delayed both in PARP-1-proficient cells pretreated with the PARP-1 inhibitor and in PARP-1-deficient cells. In order to get new insights into the mechanism of an alternative route for DSBs repair, we have established a new synapsis and end-joining two-step assay in vitro, operating on DSBs with either nuclear protein extracts or recombinant proteins. We found an end-joining activity independent of the DNA-PK/XRCC4-ligase IV complex but that actually required a novel synapsis activity of PARP-1 and the ligation activity of the XRCC1-DNA ligase III complex, proteins otherwise involved in the base excision repair pathway. Taken together, these results strongly suggest that a PARP-1-dependent DSBs end-joining activity may exist in mammalian cells. We propose that this mechanism could act as an alternative route of DSBs repair that complements the DNA-PK/XRCC4/ligase IV-dependent nonhomologous end-joining.  相似文献   

15.
Poly(ADP-ribose) polymerase (PARP-1) binds to DNA breaks to facilitate DNA repair. However, the role of PARP-1 in DNA repair appears to not be critical since PARP-1 knockout mice are viable, fertile and do not develop early onset tumours. Cells isolated from these mice show an increased level of homologous recombination. There is an intricate link between homologous recombination and PARP-1 and a possible role for PARP-1 in DNA double-strand break repair. Although PARP-1 appears not to be required for homologous recombination itself, it regulates the process through its involvement in the repair of DNA single-strand breaks (SSBs). SSBs persisting into the S phase of the cell cycle collapse replication forks, triggering homologous recombination for replication restart. We discuss the recent discoveries on the use of PARP-1 inhibitors as a targeted cancer therapy for recombination deficient cancers, such as BRCA2 tumours.  相似文献   

16.
Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage generated either exogenously or endogenously. This post-translational modification is catalyzed by poly(ADP-ribose) polymerase (PARP, PARP-1, EC 2.4.2.30). It is proposed that this protein plays a multifunctional role in many cellular processes, including DNA repair, recombination, cell proliferation and death, as well as genomic stability. Chemical inhibitors of the enzyme, dominant negative or null mutations of PARP-1 cause a high degree of genomic instability in cells. Inhibition of PARP activity by chemical inhibitors renders mice or rats susceptible to carcinogenic agents in various tumor models, indicating a role for PARP-1 in suppressing tumorigenesis. Despite the above observations, PARP-1 knockout mice are generally not prone to the development of tumors. An enhanced tumor development was observed, however, when the PARP-1 null mutation was introduced into severely compromised immune-deficient mice (a mutation in DNA-dependent protein kinase) or mice lacking other DNA repair or chromosomal guardian molecules, such as p53 or Ku80. These studies indicate that PARP-1 functions as a cofactor to suppress tumorigenesis via its role in stabilization of the genome, and/or by interacting with other DNA strand break-sensing molecules. Studies using PARP-1 mutants and chemical inhibitors have started to shed light on the role of this protein and of the specific protein post-translational modification in the control of genomic stability and hence its involvement in cancer.  相似文献   

17.
The cell cycle inhibitor p21CDKN1A was previously found to interact directly with DNA nick-sensor poly(ADP-ribose) polymerase-1 (PARP-1) and to promote base excision repair (BER). However, the molecular mechanism responsible for this BER-related association of p21 with PARP-1 remains to be clarified. In this study we investigate the capability of p21 to influence PARP-1 binding to DNA repair intermediates in a reconstituted BER system in vitro. Using model photoreactive BER substrates containing single-strand breaks, we found that full-length recombinant GST-tagged p21 but not a C-terminal domain truncated form of p21 was able to stimulate the PARP-1 binding to BER intermediates with no significant influence on the catalytic activity of PARP-1. In addition, we investigate whether the activation of PARP-1 through poly(ADP-ribose) (PAR) synthesis, is required for its interaction with p21. We have found that in human fibroblasts and in HeLa cells treated with the DNA alkylating agent N-methyl-N''-nitro-N-nitrosoguanidine (MNNG), the interaction of p21 with PARP-1 was greatly dependent on PAR synthesis. In fact, an anti-PAR antibody was able to co-immunoprecipitate p21 and PARP-1 from extracts of MNNG-treated cells, while blocking PAR synthesis with the PARP-1 inhibitor Olaparib, drastically reduced the amount of p21 co-immunoprecipitated by a PARP-1 antibody. Our results provide the first evidence that p21 can stimulate the binding of PARP-1 to DNA repair intermediates, and that this cooperation requires PAR synthesis.  相似文献   

18.
19.
Ku is an abundant heterodimeric nuclear protein, consisting of 70- and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP-ribose) polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end joining (NHEJ) repair pathway whereas PARP-1 functions in the single strand break repair and base excision repair (BER) pathways. Recent studies have revealed that PARP-1 and Ku80 interact in vitro. To determine whether the association of PARP-1 and Ku80 has any physiological significance or synergistic function in vivo, mice lacking both PARP-1 and Ku80 were generated. The resulting offspring died during embryonic development displaying abnormalities around the gastrulation stage. In addition, PARP-1-/-/Ku80-/- cultured blastocysts had an increased level of apoptosis. These data suggest that the functions of both Ku80 and PARP-1 are essential for normal embryogenesis and that a loss of genomic integrity leading to cell death through apoptosis is likely the cause of the embryonic lethality observed in these mice.  相似文献   

20.
Huber A  Bai P  de Murcia JM  de Murcia G 《DNA Repair》2004,3(8-9):1103-1108
Poly(ADP-ribosyl)ation is an immediate DNA damage-dependent posttranslational modification of histones and nuclear proteins that contributes to the survival of injured proliferating cells. Poly(ADP-ribose) polymerases (PARPs) now constitute a superfamily of 18 proteins, encoded by different genes and displaying a common conserved catalytic domain. PARP-1 (113kDa), the founding member, and PARP-2 (62kDa) are both involved in DNA-break sensing and signaling when single strand break repair (SSBR) or base excision repair (BER) pathways are engaged. The generation by homologous recombination of deficient mouse models have confirmed the caretaker function of PARP-1 and PARP-2 in mammalian cells under genotoxic stress. This review summarizes our present knowledge on their physiological role in the cellular response to DNA damage and on the genetic interactions between PARP-1, PARP-2, Atm that play an essential role during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号