首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetitive extragenic palindromic (REP) sequences are highly conserved inverted repeats present in up to 1000 copies on the Escherichia coli chromosome. We have shown both in vivo and in vitro that REP sequences can stabilize upstream mRNA by blocking the processive action of 3'----5' exonucleases. In a number of operons, mRNA stabilization by REP sequences plays an important role in the control of gene expression. Furthermore, differential mRNA stability mediated by the REP sequences can be responsible for differential gene expression within polycistronic operons. Despite the key role of REP sequences in mRNA stability and gene expression in a number of operons, several lines of evidence suggest that this is unlikely to be the primary reason for the exceptionally high degree of sequence conservation between REP sequences. Other possible functions for REP sequences are discussed. We propose that REP sequences may be a prokaryotic equivalent of 'selfish DNA' and that gene conversion may play a role in the evolution and maintenance of REP sequences.  相似文献   

2.
Stabilization of translationally active mRNA by prokaryotic REP sequences   总被引:79,自引:0,他引:79  
  相似文献   

3.
S F Newbury  N H Smith  C F Higgins 《Cell》1987,51(6):1131-1143
In this paper we demonstrate a role for mRNA stability in controlling relative gene expression within a polycistronic operon. The polycistronic malEFG operon of E. coli contains two REP sequences (highly conserved inverted repeats) within the malE-malF intercistronic region. Deletion of these REP sequences from the chromosomal operon not only destabilizes upstream malE mRNA, but also results in a 9-fold reduction in the synthesis of MalE protein. A single REP sequence seems to be as efficient as the two normally found in this intergenic region at stabilizing translationally active upstream mRNA. The widespread occurrence of REP sequences and other sequences that could potentially stabilize upstream mRNA suggests that this mechanism of control of gene expression may be rather common.  相似文献   

4.
In Escherichia coli, the phosphorylation and dephosphorylation of isocitrate dehydrogenase (IDH) are catalyzed by a bifunctional protein kinase/phosphatase. We have determined the nucleotide sequence of aceK, the gene encoding IDH kinase/phosphatase. This gene consists of a single open reading frame of 1,734 base pairs preceded by a Shine-Dalgarno ribosome-binding site. Examination of the deduced amino acid sequence of IDH kinase/phosphatase revealed sequences which are similar to the consensus sequence for ATP-binding sites. This protein did not, however, exhibit the extensive sequence homologies which are typical of other protein kinases. Multiple copies of the REP family of repetitive extragenic elements were found within the intergenic region between aceA (encoding isocitrate lyase) and aceK. These elements have the potential for combining to form an exceptionally stable stem-loop structure (delta G = -54 kcal/mol [ca. -226 kJ/mol]) in the mRNA. This structure, which masks the ribosome-binding site and start codon for aceK, may contribute to the downshift in expression observed between aceA and aceK. Another potential stem-loop structure (delta G = -29 kcal/mol [ca. 121 kJ/mol]), unrelated to the REP sequences, was found within aceK.  相似文献   

5.
6.
In prokaryotic cells, 3′–5′ exonucleases can attenuate messenger RNA (mRNA) directionally from the direction of the 3′–5′ untranslated region (UTR), and thus improving the stability of mRNAs without influencing normal cell growth and metabolism is a key challenge for protein production and metabolic engineering. Herein, we significantly improved mRNA stability by using synthetic repetitive extragenic palindromic (REP) sequences as an effective mRNA stabilizer in two typical prokaryotic microbes, namely, Escherichia coli for the production of cyclodextrin glucosyltransferase (CGTase) and Corynebacterium glutamicum for the production of N-acetylglucosamine (GlcNAc). First, we performed a high-throughput screen to select 4 out of 380 REP sequences generated by randomizing 6 nonconservative bases in the REP sequence designed as the degenerate base “N.” Secondly, the REP sequence was inserted at several different positions after the stop codon of the CGTase-encoding gene. We found that mRNA stability was improved only when the space between the REP sequence and stop codon was longer than 12 base pairs (bp). Then, by reconstructing the spacer sequence and secondary structure of the REP sequence, a REP sequence with 8 bp in a stem-loop was obtained, and the CGTase activity increased from 210.6 to 291.5 U/ml. Furthermore, when this REP sequence was added to the 3′-UTR of glucosamine-6-phosphate N-acetyltransferase 1 ( GNA1), which is a gene encoding a key enzyme GNA1 in the GlcNAc synthesis pathway, the GNA1 activity was increased from 524.8 to 890.7 U/mg, and the GlcNAc titer was increased from 4.1 to 6.0 g/L in C. glutamicum. These findings suggest that the REP sequence plays an important function as an mRNA stabilizer in prokaryotic cells to stabilize its 3′-terminus of the mRNA by blocking the processing action of the 3′–5′ exonuclease. Overall, this study provides new insight for the high-efficiency overexpression of target genes and pathway fine-tuning in bacteria.  相似文献   

7.
A 21-base pair RNA duplex that perfectly matches an endogenous target mRNA selectively degrades the mRNA and suppresses gene expression in mammalian tissue culture cells. A single base mismatch with the target is believed to protect the mRNA from degradation, making this type of interference highly specific to the targeted gene. A short RNA with mismatches to a target sequence present in multiple copies in the 3'-untranslated region of an exogenously expressed gene can, however, silence it by translational repression. Here we report that a mismatched RNA, targeted to a single site in the coding sequence of an endogenous gene, can efficiently silence gene expression by repressing translation. The antisense strand of such a mismatched RNA requires a 5'-phosphate but not a 3'-hydroxyl group. G.U wobble base pairing is tolerated as a match for both RNA degradation and translation repression. Together, these findings suggest that a small inhibitory RNA duplex can suppress expression of off-target cellular proteins by RNA degradation or translation repression. Proper design of experimental small inhibitory RNAs or a search for targets of endogenous micro-RNAs must therefore take into account that these short RNAs can affect expression of cellular genes with as many as 3-4 base mismatches and additional G.U mismatches.  相似文献   

8.
AU-rich elements (AREs) in the 3' untranslated regions of several cytokine and oncogene mRNAs have been shown to function as signals for rapid mRNA degradation, and it is assumed that the many other cytokine and oncogene mRNAs that contain AU-rich sequences in the 3' untranslated region are similarly targeted for rapid turnover. We have used a chimeric gene composed mostly of growth hormone sequences with expression driven by the c-fos promoter to investigate the minimal sequence required to act as a functional destabilizing element and to monitor the effect of these sequences on early steps in the degradation pathway. We find that neither AUUUA, UAUUUA, nor AUUUAU can function as a destabilizing element. However, the sequence UAUUUAU, when present in three copies, is sufficient to destabilize a chimeric mRNA. We propose that this sequence functions by virtue of being a sufficient portion of the larger sequence, UUAUUUA(U/A)(U/A), that we propose forms the optimal binding site for a destabilizing factor. The destabilizing effect depends on the number of copies of this proposed binding site and their degree of mismatch in the first two and last two positions, with mismatches in the AUUUA sequence not being tolerated. We found a strict correlation between the effect of an ARE on degradation rate and the effect on the rate of poly(A) shortening, consistent with deadenylation being the first and rate-limiting step in degradation, and the step stimulated by destabilizing AREs. Deadenylation was observed to occur in at least two phases, with an oligo(A) intermediate transiently accumulating, consistent with the suggestion that the degradation processes may be similar in yeast and mammalian cells. AREs that are especially U rich and contain no UUAUUUA(U/A)(U/A) motifs failed to influence the degradation rate or the deadenylation rate, either when downstream of suboptimal destabilizing AREs or when alone.  相似文献   

9.
A computer search for repeated sequences led us to identify five REP (repetitive extragenic palindromic) sequences in the 3'-terminal region of the Escherichia coli ribonucleoside diphosphate reductase gene (nrdA). These REP sequences are located within a putative duplicated DNA region, the first of them being part of the carboxy-terminal coding region of the nrdA gene. This is the first report of a REP sequence within a structural gene and also the first example of a REP sequence apparently generated by DNA duplication.  相似文献   

10.
11.
In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.  相似文献   

12.
13.
In Escherichia coli, REP-stabilizers are structural elements in polycistronic messages that protect 5'-proximal cistrons from 3'-->5' exonucleolytic degradation. The stabilization of a protected cistron can be an important determinant in the level of gene expression. Our results suggest that RNase E, an endoribonuclease, initiates the degradation of REP-stabilized mRNA. However, subsequent degradation of mRNA fragments containing a REP-stabilizer poses a special challenge to the mRNA degradation machinery. Two enzymes, the DEAD-box RNA helicase, RhlB and poly(A) polymerase (PAP) are required to facilitate the degradation of REP-stabilizers by polynucleotide phosphorylase (PNPase). This is the first in vivo evidence that these enzymes are required for the degradation of REP-stabilizers. Furthermore, our results show that REP degradation by RhlB and PNPase requires their association with RNase E as components of the RNA degradosome, thus providing the first in vivo evidence that this ribonucleolytic multienzyme complex is involved in the degradation of structured mRNA fragments.  相似文献   

14.
15.
16.
17.
We examined the effect of plasmid-encoded gene products on two DNase-I-sensitive regions of DNA in the yeast 2 micron plasmid nucleoprotein complex. For these studies, each sensitive region was cloned into an appropriate vector, and the chimeric plasmids were transformed into yeast. Nucleoprotein complexes of the chimeric plasmids were partially purified and tested for sensitivity to DNase I digestion. One sensitive region is between the 3' end of the 2 micron plasmid coding region D and the plasmid REP3 locus. This region was more sensitive and exhibited a different cleavage pattern when purified from a yeast strain containing endogenous 2 micron plasmid copies than when purified from a yeast strain lacking plasmid copies. Examination of the effect of individual gene products and combinations of the various gene products revealed that the plasmid's REP1, REP2 and D loci were all necessary to restore the pattern to that found in the preparation containing endogenous 2 micron plasmid copies. The other sensitive region studied brackets the binding site of the plasmid-encoded FLP protein, which catalyzes site-specific recombination between the 2 micron plasmid's inverted repeated sequences. In contrast to the first sensitive region examined, the sensitive region in the inverted repeat was less sensitive in chimeric plasmids isolated from a yeast strain containing endogenous 2 micron plasmid copies than from one lacking endogenous copies. Presumably, this protection results from the binding of the FLP protein.  相似文献   

18.
We developed a completely homogeneous and isothermal method of detecting RNA sequences and demonstrated ultrarapid and direct quantification of pathogenic gene expression with high sensitivity. The assay is based on performing isothermal RNA sequence amplification in the presence of our novel DNA probe, an intercalation activating fluorescence DNA probe, and measuring the fluorescence intensity of the reaction mixture. When detecting mecA gene expression of methicillin-resistant Staphylococcus aureus, we quantified starting copies ranging from 10 to 10(7) copies within 10min. The primer sequences were designed to bind to secondary structure-free sites of the target RNA, which enabled a totally isothermal protocol to quantify mRNA specifically in a sample of existing genomic DNA. When we applied this to quantifying the expression of marker genes of Vibrio parahaemolyticus and Mycobacterium bovis BCG strain, the results correlated well with the viability of each bacterium. We also demonstrated monitoring Pab gene expression of M. bovis BCG during cultivation with antibiotics. The present method can potentially realize rapid antimicrobial susceptibility testing of slowly growing organisms, such as tuberculosis.  相似文献   

19.
The high-affinity histidine permease of Salmonella typhimurium is encoded by a four-gene operon containing a large intercistronic region located between the first gene (hisJ) and the three distal genes (hisQ, hisM, hisP). The level of expression of hisJ is 30-fold greater than that of hisP. In order to investigate the role of the intercistronic region in intra-operonic control of gene expression, we have isolated MudII-mediated lacZ gene fusions to hisQ, hisM and hisP. We have used these fusions to isolate and analyse mutants that have altered levels of expression of the hisQ gene, the first gene downstream from the intercistronic region. The results indicate that intra-operonic regulation is due to a combination of factors including efficiency of translational initiation, mRNA degradation, and retroregulation of hisJ expression. They also suggest that the REP (Repetitive Extragenic Palindromic) sequences, which are located in the hisJ-hisQ intercistronic region, may interfere with translation of the hisQ gene and affect upstream messenger RNA stability by protecting it from 3' to 5' nuclease degradation (in agreement with data presented by Newbury et al., 1987).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号