首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have characterized a nuclear mutant of barley, viridis-115, lacking photosystem II (PSII) activity and compared it to wild-type seedlings during light-induced chloroplast development. Chloroplasts isolated from wild-type and viridis-115 seedlings illuminated for 1 h synthesized similar polypeptides and had similar protein composition. After 16 h of illumination, however, mutant plastids exhibited reduced ability to radiolabel D1, CP47, and several low Mr membrane polypeptides, and by 72 h, synthesis of these proteins was undetectable. Immunoblot analysis showed that plastids of dark-grown wild-type barley lacked several PSII proteins (D1, D2, CP47, and CP43) and that 16 h of illumination resulted in the accumulation of these polypeptides. In contrast, these polypeptides did not accumulate in illuminated viridis-115 seedlings, although mutant plastids accumulated two PSII proteins that participate in oxygen evolution, oxygen-evolving enhancers 1 and 3. Northern analysis showed that the levels of psbA and psbB mRNA in mutant plastids were equal to or greater than levels in wild-type plastids throughout the developmental period examined here. These results indicate that the nuclear mutation present in viridis-115 affects the translation and stability of the chloroplast-encoded D1 and CP47 polypeptides and that its influence is expressed after the onset of light-induced chloroplast development.  相似文献   

3.
The nuclear gene mutant of barley, vir-115, shows a developmentally induced loss of D1 synthesis that results in inactivation of Photosystem II. Translation in plastids isolated from 1 h illuminated vir-115 seedlings is similar to wild type. In wild-type barley, illumination of plants for 16 to 72 h results in increased radiolabel incorporation into the D1 translation intermediates of 15–24 kDa. In contrast, these D1 translation intermediates were not observed in vir-115 plastids isolated from plants illuminated for 16–72 h. In addition, after 72 h of illumination, radiolabel incorporation into D1 was undetectable in vir-115 plastids. The level and distribution ofpsbA mRNA in membrane-associated polysomes was similar in wild-type and vir-115 mutant plastids isolated from plants illuminated for 16–72 h. Toeprint analysis showed similar levels of translation initiation complexes onpsbA mRNA in vir-115 and wild-type plastids. These results indicate that translation initiation and elongation of D1 is not significantly altered in the mutant plastids. Ribosome pausing onpsbA mRNA was observed in wild-type and vir-115 mutant plastids. Therefore, the absence of D1 translation intermediates in mutant plastids is not due to a lack of ribosome pausing onpsbA mRNA. Based on these results, it is proposed that vir-115 lacks or contains a modified nuclear-encoded gene product which normally stabilizes the D1 translation intermediates. In wild-type plastids, ribosome pausing and stabilization of D1 translation intermediates is proposed to facilitate assembly of cofactors such as chlorophyll will D1 allowing continued D1 synthesis and accumulation in mature chloroplasts.  相似文献   

4.
Translation of the large subunit of ribulose-1,5-bisphosphate carboxylase (LSU) was investigated by labeling of isolated barley plastids with [35S]-methionine. In both chloroplasts and etioplasts, labeling of LSU was severely impaired if plastid membranes were removed from the reaction mixtures. Removal of membrane-bound polysomes with high salt or puromycin greatly decreased translation of LSU. Pulse-labeled chloroplast membranes were shown to release LSU if chased with unlabeled methionine in the presence of stroma. Immunoprecipitation detected higher amounts of labeled LSU translation intermediates associated with the membrane fraction than in the soluble fraction. We therefore conclude that, in plastids, membrane-bound polysomes are required not only for translation of membrane-intrinsic proteins but also for translation of a soluble protein.  相似文献   

5.
Klaus Apel  Klaus Kloppstech 《Planta》1980,150(5):426-430
The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein (LHCP) is investigated in wild-type barley (Hordeum vulgare L.) and in the chlorophyll b-less mutant chlorina f2. In dark-grown plants a short red light pulse triggers the appearance of mRNA activity for the LHCP. While the accumulation of this mRNA is controlled by phytochrome (Apel (1979) Eur. J. Biochem. 97, 183–188), the red light treatment is not sufficient to induce the appearance of the LHCP within the membrane. Thus, at least one of the subsequent steps in the biosynthetic pathway leading to the assembly of the LHCP is controlled by light. The red light-induced mRNA is taken up into the polysomes during the subsequent dark period and is translated in vitro in a cell-free protein synthesizing system. However, an accumulation of the freshly synthesized polypeptide within the plant is not observed. The apparent instability of the polypeptide might be explained by the deficiency of chlorophyll in the red light-treated plants. In the chlorophyll b-less barley mutant chlorina f2 an accumulation of the freshly synthesized apoprotein of the LHCP can be observed in the light. Thus, chlorophyll a formation seems to be a light-dependent step which is required for the stabilization of the LHCP.Abbreviations mRNA messenger RNA - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecylsulfate - LHCP light-harvesting chlorophyll a/b protein  相似文献   

6.
The light-induced rise in chlorophyll fluorescence and the subsequent decay of fluorescence in darkness were measured in barley and maize leaves exposed to heat treatment. The redox conversions of the photosystem I primary donor P700, induced by far-red light, were also monitored from the absorbance changes at 830 nm. After heating of leaves at temperatures above 40°C, the ratio of variable and maximum fluorescence decreased for leaves of both plant species, indicating the inhibition of photosystem II (PSII) activity. A twofold reduction of this ratio in barley and maize leaves was observed after heating at 45.3 and 48.1°C, respectively, which suggests the higher functional resistance of PSII in maize. The amplitude of the slow phase in the dark relaxation of variable fluorescence did not change after the treatment of barley and maize leaves at temperatures up to 48°C. In leaves treated at 42 and 46°C, the slow phase of dark relaxation deviated from an exponential curve. The relaxation kinetics included a temporary increase in fluorescence to a peak about 1 s after turning off the actinic light. Unlike the slow component, the fast and intermediate phases in the dark relaxation of variable fluorescence disappeared fully or partly after the treatment of leaves at 46°C. The photooxidation of P700 in heat-treated leaves was saturated at much higher irradiances of far-red light than in untreated leaves. At the same time, the dark reduction of P700+ was substantially accelerated after heat treatment. The data provide evidence that the heating of leaves stimulated the alternative pathways of electron transport, i.e., cyclic transport around photosystem I and/or the donation of electrons to the plastoquinone pool from the reduced compounds located in the chloroplast stroma. The rate of alternative electron transport after the heat treatment was higher in maize leaves than in barley leaves. It is supposed that the stimulation of alternative electron transport, associated with proton pumping into the thylakoid, represents a protective mechanism that prevents the photoinhibition of PSII in leaves upon a strong suppression of linear electron transport in chloroplasts exposed to heat treatment.  相似文献   

7.
Regulation of synthesis of the photosystem I reaction center   总被引:8,自引:2,他引:6       下载免费PDF全文
The in vivo biosynthesis of the P700 chlorophyll a-apoprotein was examined to determine whether this process is light regulated and to determine its relationship to chlorophyll accumulation during light- induced chloroplast development in barley (Hordeum vulgare L.). Rabbit antibodies to the 58,000-62,000-mol-wt apoprotein were used to measure relative synthesis rates by immunoprecipitation of in vivo labeled leaf proteins and to detect apoprotein accumulation on nitrocellulose protein blots. 5-d-old, dark-grown barley seedlings did not contain, or show net synthesis of, the 58,000-62,000-mol-wt polypeptide. When dark- grown barley seedlings were illuminated, net synthesis of the apoprotein was observed within the first 15 min of illumination and accumulated apoprotein was measurable after 1 h. After 4 h, P700 chlorophyll a-apoprotein biosynthesis accounted for up to 10% of the total cellular membrane protein synthesis. Changes in the rate of synthesis during chloroplast development suggest coordination between production of the 58,000-62,000-mol-wt polypeptide and the accumulation of chlorophyll. However, when plants were returned to darkness after a period of illumination (4 h) P700 chlorophyll a-apoprotein synthesis continued for a period of hours though at a reduced rate. Thus we found that neither illumination nor the rate of chlorophyll synthesis directly control the rate of apoprotein synthesis. The rapidity of the light-induced change in net synthesis of the apoprotein indicates that this response is tightly coupled to the primary events of light-induced chloroplast development. The data also demonstrate that de novo synthesis of the apoprotein is required for the onset of photosystem I activity in greening seedlings.  相似文献   

8.
Dark-grown barley (Hordeum vulgare) etioplasts were examined for their content of membrane-bound iron-sulfur centers by electron paramagnetic resonance spectroscopy at 15K. They were found to contain the high potential iron-sulfur center characterized (in the reduced state) by an electron paramagnetic resonance g value of 1.89 (the “Rieske” center) but did not contain any low potential iron-sulfur centers. Per mole of cytochrome f, dark-grown etioplasts and fully developed chloroplasts had the same content of the Rieske center. During greening of etioplasts under continuous light, low potential bound iron-sulfur centers appear. In addition, the photosystem I reaction center, as measured by the photooxidation of P700 at 15K, also became functional; during greening the appearance of a photoreducible low potential iron-sulfur center paralleled the appearance of P700 photoactivity.  相似文献   

9.
Accumulation of plastid-encoded chlorophyll apoproteins and chlorophyll synthesis are controlled by light in angiosperms. An in vitro system utilizing isolated and lysed barley (Hordeum vulgare L.) etioplasts revealed the specific accumulation of P700, CP47, CP43 and D2 triggered by de novo synthesis of chlorophyll. Accumulation rates of radiolabelled chlorophyll apoproteins were linear for about 30 min. Pulse/chase translation assays showed that synthesis of chlorophyll does not result in increased chlorophyll apoprotein stability. Instead turnover rates of chlorophyll apoproteins were higher in the presence than in the absence of chlorophyll. Chlorophyll-dependent accumulation of chlorophyll apoproteins must therefore be regulated on the level of translation. Translation of chlorophyll apoproteins was blocked to about 50% by addition of 30-50 microM aurintricarboxylic acid or 20 microM kasugamycin. The kinetics of chlorophyll-dependent translation indicated that the in vitro translation system is capable of translation initiation. The capability of translation initiation was lost in lysed etioplasts after preincubation for at least 5 min without chlorophyll synthesis. The results suggest that initiation is involved in chlorophyll-dependent regulation of translation.  相似文献   

10.
In order to study the coordinate accumulation of chlorophyll (Chl) and apoproteins of Chl-protein complexes (CPs) during chloroplast development, we examined changes in the accumulation of the apoproteins in barley (Hordeum vulgare L.) leaves when the rate of Chl synthesis was altered by feeding 5-aminolevulinic acid (ALA), a precursor of Chl biosynthesis. Pretreatment with ALA increased the accumulation of Chl a and Chl b 1.5- and 2.3-fold, respectively, after 12 cycles of intermittent light (2 min light followed by 28 min darkness). Apoproteins of the light-harvesting Chl a/b-protein complex of photosystem II (LHCII) were increased 2.4-fold with ALA treatment. However, apoproteins of the P700-Chl a-protein complex (CP1) and the 43-kDa apoprotein of a Chl a-protein complex of photosystem II (CPa) were not increased by ALA application. With respect to CPs themselves, LHCII was increased when Chl synthesis was raised by ALA feeding, whereas CP1 exhibited no remarkable increase. These results indicate that LHCII serves a role in maintaining the stoichiometry of Chl to apoproteins by acting as a temporary pool for Chl molecules.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll - CP chlorophyll-protein complex - CPa chlorophyll a-protein complex of PSII - CP1 P700-chlorophyll a-protein complex - LDS lithium dodecyl sulfate - LHCII light-harvesting chlorophyll a/b-protein complex of PSII This work was supported by the Grants-in-Aid for Scientific Research (04304004) from the Ministry of Education, Science and Culture, Japan.  相似文献   

11.
An in vitro translation system using lysed etioplasts was developed to test if the accumulation of plastid-encoded chlorophyll a apoproteins is dependent on the de novo synthesis of chlorophyll a. The P700 apoproteins, CP47 and CP43, were not radiolabeled in pulsechase translation assays employing lysed etioplasts in the absence of added chlorophyll precursors. When chlorophyllide a plus phytylpyrophosphate were added to lysed etioplast translation assays in the dark, chlorophyll a was synthesized and radiolabeled P700 apoproteins, CP47 and CP43, and a protein which comigrates with D1 accumulated. Chlorophyllide a or phytylpyrophosphate added separately to the translation assay in darkness did not induce chlorophyll a formation or chlorophyll a apoprotein accumulation. Chlorophyll a formation and chlorophyll a apoprotein accumulation were also induced in the lysed etioplast translation system by the photoreduction of protochlorophyllide to chlorophyllide a in the presence of exogenous phytylpyrophosphate. Accumulation of radiolabeled CP47 was detectable when very low levels of chlorophyll a were synthesized de novo (less than 0.01 nmol/10(7) plastids), and radiolabel increased linearly with increasing de novo chlorophyll a formation. Higher levels of de novo synthesized chlorophyll a were required prior to detection of radiolabel incorporation into the P700 apoproteins and CP43 (greater than 0.01 nmol/10(7) plastids). Radiolabel incorporation into the P700 apoproteins, CP47 and CP43, saturated at a chlorophyll a concentration which corresponds to 50% of the etioplast protochlorophyllide content (0.06 nmol of chlorophyll a/10(7) plastids).  相似文献   

12.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.  相似文献   

13.
14.
The possible regulatory role of NADPH-protochlorophyllide oxidoreductase for chlorophyll accumulation has been investigated in barley plants. Within the primary leaf of etiolated plants the different maturation stages of etioplasts are found in a linear series with the youngest in cells near the base and the oldest in cells near the tip. This distribution of different plastid forms is paralleled by drastic differences in the NADPH-protochlorophyllide-oxidoreductase content of the plastids and their capacity to accumulate chlorophyll during illumination. The amount of enzyme and the rate of chlorophyll accumulation are highest in the mature etioplast in the tip of the leaf and both decline rapidly with decreasing age of the leaf tissue, being almost undetectable in the leaf base. The translatable mRNA coding for the enzyme shows a different distribution pattern within the leaf. The highest concentration is found in the middle part of the leaf while in the top part only traces of this mRNA are detectable. It is concluded that during leaf development the enzyme is synthesized rapidly only during a limited time period and that it is stored subsequently in the mature etioplast as a stable protein. The close correlation between the distribution of the enzyme within the barley leaf and that of the potential to accumulate chlorophyll during illumination would favour a control of chlorophyll accumulation by the amount of NADPH-protochlorophyllide oxidoreductase. Dark-grown plants which were exposed to far-red light were used to test this possibility. The far-red-absorbing form of phytochrome (Pfr) has an inverse effect on the kinetics of chlorophyll accumulation and the enzyme concentration. Our results indicate that the rate of chlorophyll accumulation in barley is not determined by the level of NADPH-protochlorophyllide oxidoreductase present in the leaves.  相似文献   

15.
Sun and shade leaves of several plant species from a neotropical forest were exposed to excessive light to evaluate the responses of photosystem I in comparison to those of photosystem II. Potential photosystem I activity was determined by means of the maximum P700 absorbance change around 810 nm (ΔA810max) in saturating far-red light. Leaf absorbance changes in dependence of increasing far-red light fluence rates were used to calculate a ‘saturation constant’, Ks, representing the far-red irradiance at which half of the maximal absorbance change (ΔA810max/2) was reached in the steady state. Photosystem II efficiency was assessed by measuring the ratio of variable to maximum chlorophyll fluorescence, Fv/Fm, in dark-adapted leaf samples. Strong illumination caused a high degree of photo-inhibition of photosystem II in all leaves, particularly in shade leaves. Exposure to 1800–2000 μ mol photons m2 s1 for 75 min did not substantially affect the potential activity of photosystem I in all species tested, but caused a more than 40-fold increase of Ks in shade leaves, and a three-fold increase of Ks in sun leaves. The increase in Ks was reversible during recovery under low light, and the recovery process was much faster in sun than in shade leaves. The novel effect of high-light stress on the light saturation of P700 oxidation described here may represent a complex reversible mechanism within photosystem I that regulates light-energy dissipation and thus protects photosystem I from photo-oxidative damage. Moreover, we show that under high-light stress a high proportion of P700 accumulates in the oxidized state, P700+. Presumably, conversion of excitation energy to heat by this cation radical may efficiently contribute to photoprotection.  相似文献   

16.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

17.
The light-response curves of P700 oxidation and time-resolved kinetics of P700+ dark re-reduction were studied in barley leaves using absorbance changes at 820 nm. Leaves were exposed to 45 °C and treated with either diuron or diuron plus methyl viologen (MV) to prevent linear electron flow from PS II to PSI and ferredoxin-dependent cyclic electron flow around PSI. Under those conditions, P700+ could accept electrons solely from soluble stromal reductants. P700 was oxidized under weak far-red light in leaves treated with diuron plus MV, while identical illumination was nearly ineffective in diuron-treated leaves in the absence of MV. When heat-exposed leaves were briefly illuminated with strong far-red light, which completely oxidized P700, the kinetics of P700+ dark reduction was fitted by a single exponential term with half-time of about 40 ms. However, two first-order kinetic components of electron flow to P700+ (fast and slow) were found after prolonged leaf irradiation. The light-induced modulation of the kinetics of P700+ dark reduction was reversed following dark adaptation. The fast component (half time of 80–90 ms) was 1.5 larger than the slow one (half time of about 1 s). No kinetic competition occurred between two pathways of electron donation to P700+ from stromal reductants. This suggests the presence of two different populations of PSI. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
T. Borner  R. R. Mendel  J. Schiemann 《Planta》1986,169(2):202-207
The activities of nitrite reductase (EC 1.7.7.1) are 60–70% of wild-type activity in pigment-deficient leaves of the chloroplast-ribosomedeficient mutants albostrians (Hordeum vulgare) and iojap (Zea mays). The activity and apoprotein of nitrate reductase (EC 1.6.6.1.) are lacking in the barley mutant. Only very low activities of nitrate reductase can be extracted from leaves of the maize mutant. The molybdenum cofactor of nitrate reductase and xanthine dehydrogenase (EC 1.2.3.2) is present in maize and barley mutant plants. However, it is not inducible by nitrate in pigment-deficient leaves of albostrians. From these results we conclude: (i) Nitrite reductase (a chloroplast enzyme) is synthesized in the cytoplasm and does not need the presence of nitrate reductase for the induction and maintenance if its activity. (ii) The loss or low activity of nitrate reductase is a consequence of the inability of the mutants to accumulate the apoprotein of this enzyme. (iii) The chloroplasts influence the accumulation (i.e. most probably the synthesis) of the nonchloroplast enzyme, nitrate reductase. The accumulation of nitrate reductase needs a chloroplast factor which is not provided by mutant plastids blocked at an early stage of their development.Abbreviations CRM cross-reacting material - Mo-co molybdenum cofactor - NiR nitrite reductase - NR nitrate reductase  相似文献   

20.
Summary Eleven green individuals were isolated when 95000 M2 plants of barley (Hordeum vulgare L.), mutagenised with azide in the M1, were screened for nitrite accumulation in their leaves after nitrate treatment in the light. The selected plants were maintained in aerated liquid culture solution containing glutamine as sole nitrogen source. Not all plants survived to flowering and some others that did were not fertile. One of the selected plants, STA3999, from the cultivar Tweed could be crossed to the wild-type cultivar and analysis of the F2 progeny showed that leaf nitrite accumulation was due to a recessive mutation in a single nuclear gene, which has been designated Nir1. The homozygous nir1 mutant could be maintained to flowering in liquid culture with either glutamine or ammonium as sole nitrogen source, but died within 14 days after transfer to compost. The nitrite reductase cross-reacting material seen in nitrate-treated wild-type plants could not be detected in either the leaf or the root of the homozygous nir1 mutant. Nitrite reductase activity, measured with dithionite-reduced methyl viologen as electron donor, of the nitrate-treated homozygous nir1 mutant was much reduced but NADH-nitrate reductase activity was elevated compared to wild-type plants. We conclude that the Nir1 locus determines the formation of nitrite reductase apoprotein in both the leaf and root of barley and speculate that it represents either the nitrite reductase apoprotein gene locus or, less likely, a regulatory locus whose product is required for the synthesis of nitrite reductase, but not nitrate reductase. Elevation of NADH-nitrate reductase activity in the nir1 mutant suggests a regulatory perturbation in the expression of the Narl gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号