首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythrocyte binding antigen-160 (EBA-160) protein is a Plasmodium falciparum antigen homologue from the erythrocyte binding protein family (EBP). It has been shown that the EBP family plays a role in parasite binding to the erythrocyte surface. The EBA-160 sequence has been chemically synthesised in seventy 20-mer sequential peptides covering the entire 3D7 protein strain, each of which was tested in erythrocyte binding assays to identify possible EBA-160 functional regions. Five EBA-160 high activity binding peptides (HABPs) specifically binding to erythrocytes with high affinity were identified. Dissociation constants lay between 200 and 460 nM and Hill coefficients between 1.5 and 2.3. Erythrocyte membrane protein binding peptide cross-linking assays using SDS-PAGE showed that these peptides bound specifically to 12, 28, and 44 kDa erythrocyte membrane proteins. The nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. HABPs were able to block merozoite in vitro invasion of erythrocytes. HABPs’ potential as anti-malarial vaccine candidates is also discussed.  相似文献   

2.
Plasmodium falciparum histoaspartic protease (HAP) is an active enzyme involved in haemoglobin degradation. HAP is expressed as an inactive 51-kDa zymogen and is cleaved into an active 37-kDa enzyme. It has been proposed that this kind of protease might be implicated in the parasite's invasion of erythrocytes; however, this protein's role during invasion has still to be determined. Synthetic peptides derived from the HAP precursor (proHAP) were tested in erythrocyte binding assays to identify their possible function in the invasion process. Two proHAP high-activity binding peptides (HABPs) specifically bound to erythrocytes; these peptides were numbered 30609 (101LKNYIKESVKLFNKGLTKKS120) and 30610 (121YLGSEFDNVELKDLANVLSF140 ). The binding of these two peptides was saturable, presenting nanomolar affinity constants. These peptides interacted with 26- and 45-kDa proteins on the erythrocyte surface; the nature of these receptor sites was studied in peptide binding assays using enzyme-treated erythrocytes. The HABPs showed greater than 90% merozoite invasion inhibition in in vitro assays. Goat serum containing proHAP polymeric peptide antibodies inhibited parasite invasion in vitro .  相似文献   

3.
Synthetic peptides from the liver stage antigen-1 (LSA-1) antigen sequence were used in HepG2 cell and erythrocyte binding assays to identify regions that could be involved in parasite invasion. LSA-1 protein peptides 20630 ((21)INGKIIKNSEKDEIIKSNLRY(40)), 20637 ((157)KEKLQGQQSDSEQERRAY(173)), 20638 ((174)KEKLQEQQSDLEQERLAY(190)) and 20639 (191KEKLQEQQSDLEQERRAY(207)) had high binding activity in HepG2 assays. Were located in immunogenic regions; peptide cell binding was saturable. Peptide 20630 bound specifically to 48kDa HepG2 membrane surface protein. LSA-1 peptides 20630 ((21)INGKIIKNSEKDEIIKSNLRY(40)) and 20633 ((81)DKELTMSNVKNVSQTNFKSLY(100)) showed specific erythrocyte binding activity and inhibited merozoite invasion of erythrocytes in vitro. A monkey serum prepared against LSA-1 20630 peptide analog (CGINGKNIKNAEKPMIIKSNLRGC) inhibited merozoite invasion in vitro. The data suggest LSA-1 "High Activity Binding Peptides" could play a possible role in hepatic cell invasion as well as merozoite invasion of erythrocytes.  相似文献   

4.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

5.
MAEBL is an erythrocyte binding protein located in the rhoptries and on the surface of mature merozoites, being expressed at the beginning of schizogony. The structure of MAEBL originally isolated from rodent malaria parasites suggested a molecule likely to be involved in invasion. We thus became interested in identifying possible MAEBL functional regions. Synthetic peptides spanning the MAEBL sequence were tested in erythrocyte binding assays to identify such possible MAEBL functional regions. Nine high activity binding peptides (HABPs) were identified: two were found in the M1 domain, one was found between the M1 and M2 regions, five in the erythrocyte binding domain (M2), and one in the protein's repeat region. The results showed that peptide binding was saturable; some HABPs inhibited in vitro merozoite invasion and specifically bound to a 33kDa protein on red blood cell membrane. HABPs' possible function in merozoite invasion of erythrocytes is also discussed.  相似文献   

6.
Several EBA-175 paralogues (EBA-140, EBA-165, EBA-175, EBA-181, and EBL-1) have been described among the Plasmodium falciparum malaria parasite proteins, which are important in the red blood cell (RBC) invasion process. EBA-181/JESEBL is a 181 kDa protein expressed in the late schizont stage and located in the micronemes; it belongs to the Plasmodium Duffy binding-like family and is able to interact with the erythrocyte surface. Here, we describe the synthesis of 78, 20-mer synthetic peptides derived from the reported EBA-181/JESEBL sequence and their ability to bind RBCs in receptor-ligand assays. Five peptides (numbered 30030, 30031, 30045, 30051, and 30060) displayed high specific binding to erythrocytes; their equilibrium binding parameters were then determined. These peptides interacted with 53 and 33 kDa receptor proteins on the erythrocyte surface, this binding being altered when RBCs were pretreated with enzymes. They were able to inhibit P. falciparum merozoite invasion of RBCs when tested in in vitro assays. According to these results, these five EBA-181/JESEBL high specific erythrocyte binding peptides, as well as the entire protein, were seen to be involved in the molecular machinery used by the parasite for invading RBCs. They are thus suggested as potential candidates in designing a multi-sub-unit vaccine able to combat the P. falciparum malaria parasite.  相似文献   

7.
It has been reported that serine repeat antigen (SERA) binds directly to human erythrocyte membranes, inside-out vesicles and intact mouse erythrocytes. Similarly, mAbs specific against SERA are effective in blocking red blood cell (RBC) invasion by P. falciparum merozoites. Furthermore, the N-terminal recombinant SERA fragment inhibits the merozoite invasion of erythrocyte. In this study of 49 non-overlapping 20-residue-long peptides encompassing the whole SERA protein FCR3 strain, seven peptides having high RBC binding activity were found. Six of these peptides (three from the SERA N-terminal domain) are located in conserved regions and show affinity constants between 150 and 1100 nM, Hill coefficients between 1.5 and 3.0 and 30000-120000 binding sites per cell. Some of these peptides inhibited in vitro merozoite invasion of erythrocyte and intra-erythrocytic development. Residues which are critical in the binding to erythrocytes (in bold face), i.e. 6725 (YLKETNNAISFESNSGSLEKK), 6733 (YALGSDIPEKCDTLASNCFLS), 6737 (YDNILVKMFKTNENNDKSELI), 6746 (DQGNCDTSWIFASKYHLETI), 6754 (YKKVQNLCGDDTADHAVNIVG) and 6762 (NEVSERVHVYHILKHIKDGK), were determined by means of competition assays with high-binding peptide glycine analogues. The identification of peptides which bind to erythrocyte membrane is important in understanding the process of RBC invasion by P. falciparum merozoites.  相似文献   

8.
Tryptophan-threonine-rich antigen (TryThrA) is a Plasmodium falciparum homologue of Plasmodium yoelii-infected erythrocyte membrane pypAg-1 antigen. pypAg-1 binds to the surface of uninfected mouse erythrocytes and has been used successfully in vaccine studies. The two antigens are characterized by an unusual tryptophan-rich domain, suggesting similar biological properties. Using synthetic peptides spanning the TryThrA sequence and human erythrocyte we have done binding assays to identify possible TryThrA functional regions. We describe four peptides outside the tryptophan-rich domain having high activity binding to normal human erythrocytes. The peptides termed HABPs (high activity binding peptides) are 30884 ((61)LKEKKKKVLEFFENLVLNKKY(80)) located at the N-terminal and 30901 ((401)RKSLEQQFGDNMDKMNKLKKY(420)), 30902 ((421)KKILKFFPLFNYKSDLESIM(440)) and 30913 ((641)DLESTAEQKAEKKGGKAKAKY(660)) located at the C-terminal. Studies with polyclonal goat antiserum against synthetic peptides chosen to represent the whole length of the protein showed that TryThrA has fluorescence pattern similar to PypAg-1 of P. yoelii. All HABPs inhibited merozoite in vitro invasion, suggesting that TryThrA protein may be participating in merozoite-erythrocyte interaction during invasion.  相似文献   

9.
The identification of sequences involved in binding to erythrocytes is an important step for understanding the molecular basis of merozoite-erythrocyte interactions that take place during invasion of the Plasmodium falciparum malaria parasite into host cells. Several molecules located in the apical organelles (micronemes, rhoptry, dense granules) of the invasive-stage parasite are essential for erythrocyte recognition, invasion, and establishment of the nascent parasitophorous vacuole. Particularly, it has been demonstrated that rhoptry proteins play an important role in binding to erythrocyte surface receptors, among which is the PfRhopH3 protein, which triggers important immune responses in patients from endemic regions. It has also been reported that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes, further supporting its direct involvement in erythrocyte invasion processes. In this study, PfRhopH3 consecutive peptides were synthesized and tested in erythrocyte binding assays for identifying those regions mediating binding to erythrocytes. Fourteen PfRhopH3 peptides presenting high specific binding activity were found, whose bindings were saturable and presented nanomolar dissociation constants. These high-activity binding peptides (HABPs) were characterized by having alpha-helical structural elements, as determined by circular dichroism, and having receptors of a possible sialic acid-dependent and/or glycoprotein-dependent nature, as evidenced in enzyme-treated erythrocyte binding assays and further corroborated by cross-linking assay results. Furthermore, these HABPs inhibited merozoite in vitro invasion of normal erythrocytes at 200 microM by up to 60% and 90%, suggesting that some RhopH3 protein regions are involved in the P. falciparum erythrocyte invasion.  相似文献   

10.
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.  相似文献   

11.
Plasmodium falciparum normocyte binding protein-1 (PfNBP-1), a Plasmodium vivax RBP-1 orthologue is expressed in the apical merozoite area. PfNBP-1 binds directly to human erythrocyte membrane in a sialic acid-dependent but trypsin-resistant way. Erythrocyte binding assays were done with synthetic peptides covering the sequence reported as PfNBP-1. Two specific erythrocyte high activity binding peptides were found: 101VFINDLDTYQYEYFYEWNQ(120), peptide 26332, and 181NTKETYLKELNKKKMLQNKK(200), peptide 26336. These two peptides' binding was saturable and presenting nanomolar affinity constants. The critical binding residues (those residues underlined and highlighted in bold) were determined by competition assays with glycine-scan analogue peptides. These peptides were able to block merozoite in vitro invasion of erythrocytes.  相似文献   

12.
The characterization of membrane proteins having no identified function in Mycobacterium tuberculosis is important for a better understanding of the biology of this pathogen. In this work, the biological activity of the Rv2560 protein was characterized and evaluated. Primers used in PCR and RT-PCR assays revealed that the gene encoding protein Rv2560 is present in M. tuberculosis complex strains, but transcribed in only some of them. Sera obtained from rabbits inoculated with polymer peptides from this protein recognized a 33 kDa band in the M. tuberculosis lysate and a membrane fraction corresponding to the predicted molecular mass (33.1 kDa) of this protein. Immunoelectron microscopy analysis found this protein on the mycobacterial membrane. Sixteen peptides covering its entire length were chemically synthesized and tested for their ability to bind to A549 and U937 cells. Peptide 11024 (121VVALSDRATTAYTNTSGVSS140) showed high specific binding to both cell types (dissociation constants of 380 and 800 nm, respectively, and positive receptor-ligand interaction cooperativity), whereas peptide 11033 (284LIGIPVAALIHVYTYRKLSGG304) displayed high binding activity to A549 cells only. Cross-linking assays showed the specific binding of peptide 11024 to a 54 kDa membrane protein on U937. Invasion inhibition assays, in the presence of shared high-activity binding peptide identified for U937 and A549 cells, presented maximum inhibition percentages of 50.53% and 58.27%, respectively. Our work highlights the relevance of the Rv2560 protein in the M. tuberculosis invasion process of monocytes and epithelial cells, and represents a fundamental step in the rational selection of new antigens to be included as components in a multiepitope, subunit-based, chemically synthesized, antituberculosis vaccine.  相似文献   

13.
Baum J  Thomas AW  Conway DJ 《Genetics》2003,163(4):1327-1336
Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses.  相似文献   

14.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

15.
Plasmodium falciparum reticulocyte binding protein RBP-2 homologues a and b (PfRBP-2-Ha and -Hb) have been described as being high molecular weight proteins, expressed at the P. falciparum merozoite apical extreme, belonging to a family of proteins found in other Plasmodium involved in the search for erythrocyte populations before being invaded by merozoites. 185, 20-mer-long non-overlapping peptides, spanning the entire PfRBP-2-Ha and -Hb sequences, were synthesised, radiolabelled and tested in erythrocyte binding assays. Fifteen PfRBP-2-Ha and -Hb high binding activity peptides (HBAPs) specifically binding to erythrocytes with high affinity were identified. Dissociation constants were between 70 and 300 nM and Hill coefficients were 1 approximately. HBAPs residues critical for binding to erythrocytes were determined. Cross-linking was performed allowing possible receptors for PfRBP-2-Ha and -Hb to be identified on the surface of the erythrocytes. Some of the HABPs showed merozoite invasion inhibition greater than 90% in in vitro assays.  相似文献   

16.
Invasion of the merozoite form of Plasmodium falciparum into human erythrocytes involves multiple receptor-ligand interactions. The EBA175 protein of P. falciparum has been shown to be the ligand that binds to a sialic acid-dependent site on glycophorin A. We have identified a novel P. falciparum ligand, termed erythrocyte-binding antigen 140 (EBA140), that shares structural features and homology with EBA175. Subcellular localization of EBA140 suggests that it is located in the micronemes, the same localization as EBA175. EBA140 binds to a sialic acid-dependent receptor on the surface of human erythrocytes. Binding of EBA140 to this erythrocyte receptor is sensitive to neuraminidase and resistant to trypsin, proteinase K and pronase. The protease-resistant properties of the erythrocyte receptor suggests that it is not glycophorin A or C. Additionally, analysis of mutant erythrocytes from humans has shown that EBA140 does not bind glycophorin B. Interestingly, we have identified a parasite line that lacks the eba140 gene, suggesting that this protein is not essential for in vitro invasion. These results suggest that EBA140 may be involved in merozoite invasion using a sialic acid-dependent receptor on human erythrocytes.  相似文献   

17.
This work shows that Plasmodium falciparum merozoite surface protein-6 (MSP-6) peptides specifically bind to membrane surface receptor on human erythrocytes. Three high activity binding peptides (HABPs) were found: peptides 31175 (41MYNNDKILSKNEVDTNIESN60) and 31178 (101YDIQATYQFPSTSGGNNVIP120) in the amino terminal region and 31191 (361EIDSTINNLVQEMIHLFSNNY380) at the carboxy terminal. Their binding to erythrocytes was saturable. HABPs 31191 and 31178 recognized 56 and 26 kDa receptors on erythrocyte membrane and inhibited in vitro Plasmodium falciparum merozoite invasion of erythrocytes by between 27% and 46% at 200 microg ml(-1) concentration, suggesting that these MSP-6 protein peptides play a possible role in the invasion process.  相似文献   

18.
19.
Binding of P. falciparum-infected erythrocytes to vascular endothelium and to uninfected erythrocytes is mediated by the parasite-derived variant erythrocyte membrane protein PfEMP-1 and various receptors, both on the vascular endothelium and on the erythrocyte surface. Consecutive, non-overlapping peptides spanning the N-terminal segment (NTS) and Duffy-binding-like PfEMP1 sequence alpha-domain (DBLalpha) of this protein were tested in erythrocyte and C32 cell binding assays. Eight peptides specifically bound to C32 cells, and were named high-activity binding peptides (HABPs). No erythrocyte binding HABPs were found in this region. Strikingly, three HABPs [6504 ((1)MVELA KMGPK EAAGG DDIED(20)), 6505 ((21)ESAKH MFDRI GKDVY DKVKE(40)) and 6506 ((41)YRAKE RGKGL QGRLS EAKFEK(60))] are located within the NTS, for which no specific function has yet been described. HABP 6505 is neither immunogenic nor protection-inducing; therefore, based on our previous reports, critical amino acids (shown in bold) in HABP-C32 cell binding were identified and replaced to modify HABP immunogenicity and protectivity. Analogue peptide 12722 (ESAKH KFDRI GKDVY DMVKE) produced high antibody titres and completely protected three out of 12 vaccinated Aotus monkeys and 23410 (KHKFD FIGKI VYDMV KER) also produced high protection-inducing titres and completely protected one out of eight monkeys. (1)H NMR studies showed that all peptides were helical. Binding of these peptides to isolated HLADRbeta1 molecules did not reveal any preference, suggesting that they could bind to molecules not studied here.  相似文献   

20.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号