首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.  相似文献   

2.
Sequence and predicted structural similarities between members of the Cys loop superfamily of ligand-gated ion channel receptors and the acetylcholine binding protein (AChBP) suggest that the ligand-binding site is formed by six loops that intersect at subunit interfaces. We employed site-directed mutagenesis to investigate the role of amino acids from the loop C region of the murine 5-HT(3AS)R in interacting with two structurally different agonists, serotonin (5-HT) and m-chlorophenylbiguanide (mCPBG). Mutant receptors were evaluated using radioligand binding, two-electrode voltage clamp, and immunofluorescence studies. Electrophysiological assays were employed to identify changes in response characteristics and relative efficacies of mCPBG and the partial agonist, 2-methyl 5-HT (2-Me5-HT). We have also constructed novel 5-HT and mCPBG docked models of the receptor binding site based on homology models of the AChBP. Both ligand-docked models correlate well with results from mutagenesis and electrophysiological assays. Four key amino acids were identified as being important to ligand binding and/or gating of the receptor. Among these, I228 and D229 are specific for effects mediated by 5-HT compared to mCPBG, indicating a differential interaction of these ligands with loop C. Residues F226 and Y234 are important for both 5-HT and mCPBG interactions. Mutations at F226, I228, and Y234 also altered the relative efficacies of agonists, suggesting a role in the gating mechanism.  相似文献   

3.
Aromatic amino acids are important components of the ligand binding site in the Cys loop family of ligand-gated ion channels. To examine the role of tryptophan residues in the ligand binding domain of the 5-hydroxytryptamine(3) (5-HT(3)) receptor, we used site-directed mutagenesis to change each of the eight N-terminal tryptophan residues in the 5-HT(3A) receptor subunit to tyrosine or serine. The mutants were expressed as homomeric 5-HT(3A) receptors in HEK293 cells and analyzed with radioligand binding, electrophysiology, and immunocytochemistry. Mutation of Trp(90), Trp(183), and Trp(195) to tyrosine resulted in functional receptors, although with increased EC(50) values (2-92-fold) to 5-HT(3) receptor agonists. Changing these residues to serine either ablated function (Trp(90) and Trp(183)) or resulted in a further increase in EC(50) (Trp(195)). Mutation of residue Trp(60) had no effect on ligand binding or receptor function, whereas mutation of Trp(95), Trp(102), Trp(121), and Trp(214) ablated ligand binding and receptor function, and all but one of the receptors containing these mutations were not expressed at the plasma membrane. We propose that Trp(90), Trp(183), and Trp(195) are intimately involved in ligand binding, whereas Trp(95), Trp(102), Trp(121), and Trp(214) have a critical role in receptor structure or assembly.  相似文献   

4.
A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily.  相似文献   

5.
The receptors for human interleukins 3 and 5 and granulocyte macrophage colony-stimulating factor are composed of ligand-specific alpha-subunits and a common beta-subunit (betac), the major signaling entity. The way in which betac interacts with ligands in the respective activation complexes has remained poorly understood. The recently determined crystal structure of the extracellular domain of betac revealed a possible ligand-binding interface composed of domain 1 of one chain of the betac dimer and the adjacent domain 4 of the symmetry-related chain. We have used site-directed mutagenesis, in conjunction with ligand binding and proliferation studies, to demonstrate the critical requirement of the domain 1 residues, Tyr(15) (A-B loop) and Phe(79) (E-F loop), in high affinity complex formation and receptor activation. The novel ligand-receptor interface formed between domains 1 and 4 represents the first example of a class I cytokine receptor interface to be composed of two noncontiguous fibronectin III domains.  相似文献   

6.
Ai LS  Liao F 《Biochemistry》2002,41(26):8332-8341
CCR6 is the receptor for the chemokine MIP-3 alpha/CCL20. Almost all chemokine receptors contain cysteine residues in the N-terminal domain and in the first, second, and third extracellular loops. In this report, we have studied the importance of all cysteine residues in the CCR6 sequence using site-directed mutagenesis and biochemical techniques. Like all G protein-coupled receptors, mutating disulfide bond-forming cysteines in the first (Cys118) and second (Cys197) extracellular loops in CCR6 led to complete elimination of receptor activity, which for CCR6 was also associated with the accumulation of the receptor intracellularly. Although two additional cysteines in the N-terminal region and the third extracellular loop, which are present in almost all chemokine receptors, are presumed to form a disulfide bond, this has not been demonstrated experimentally for any of these receptors. We found that mutating the cysteines in the N-terminal domain (Cys36) and the third extracellular loop (Cys288) neither significantly affected receptor surface expression nor completely abolished receptor function. Importantly, contrary to several previous reports, we demonstrated directly that instead of forming a disulfide bond, the N-terminal cysteine (Cys36) and the third extracellular loop cysteine (Cys288) contain free SH groups. The cysteine residues (Cys36 and Cys288), rather than forming a disulfide bond, may be important per se. We propose that CCR6 forms only a disulfide bond between the first (Cys118) and second (Cys197) extracellular loops, which confines a helical bundle together with the N-terminus adjacent to the third extracellular loop, creating the structural organization critical for ligand binding and therefore for receptor signaling.  相似文献   

7.
The EGF receptor is a transmembrane receptor tyrosine kinase that is enriched in lipid rafts. Subdomains I, II and III of the extracellular domain of the EGF receptor participate in ligand binding and dimer formation. However, the function of the cysteine-rich subdomain IV has not been elucidated. In this study, we analyzed the role of the membrane-proximal portion of subdomain IV in EGF binding and signal transduction. A double Cys-->Ala mutation that breaks the most membrane-proximal disulfide bond (Cys600 to Cys612), ablated high affinity ligand binding and substantially reduced signal transduction. A similar mutation that breaks the overlapping Cys596 to Cys604 disulfide had little effect on receptor function. Mutation of residues within the Cys600 to Cys612 disulfide loop did not alter the ligand binding or signal transducing activities of the receptor. Despite the fact that the C600,612A EGF receptor was significantly impaired functionally, this receptor as well as all of the other receptors with mutations in the region of residues 596 to 612 localized normally to lipid rafts. These data suggest that the disulfide-bonded structure of the membrane-proximal portion of the EGF receptor, rather than its primary sequence, is important for EGF binding and signaling but is not involved in localizing the receptor to lipid rafts.  相似文献   

8.
The ligand binding pocket of Cys-loop receptors consists of a number of binding loops termed A-F. Here we examine the 5-HT3 receptor loop A residues Asn-128, Glu-129 and Phe-130 using modelling, mutagenesis, radioligand binding and functional studies on HEK 293 cells. Replacement of Asn-128 results in receptors that have wild type [3H]granisetron binding characteristics but large changes (ranging from a five-fold decrease to a 1500-fold increase) in the 5-HT EC50 when compared to wild type receptors. Phe-130 mutant receptors show both increases and decreases in Kd and EC50 values, depending on the amino acid substituted. The most critical of these residues appears to be Glu-129; its replacement with a range of other amino acids results in non-binding and non-functional receptors. Lack of binding and function in some, but not all, of these receptors is due to poor membrane expression. These data suggest that Glu-129 is important primarily for receptor expression, although it may also play a role in ligand binding; Phe-130 is important for both ligand binding and receptor function, and Asn-128 plays a larger role in receptor function than ligand binding. In light of these results, we have created two new homology models of the 5-HT3 receptor, with alternative positions of loop A. In our preferred model Glu-129 and Phe-130 contribute to the binding site, while the location of Asn-128 immediately behind the binding pocket could contribute to the conformation changes that result in receptor gating. This study provides a new model of the 5-HT3 receptor binding pocket, and also highlights the importance of experimental data to support modelling studies.  相似文献   

9.
5-hydroxytryptamine (5-HT)3 and gamma-aminobutyric acid, type C (GABAC) receptors are members of the Cys-loop superfamily of neurotransmitter receptors, which also includes nicotinic acetylcholine, GABAA, and glycine receptors. The details of how agonist binding to these receptors results in channel opening is not fully understood but is known to involve charged residues at the extracellular/transmembrane interface. Here we have examined the roles of such residues in 5-HT3 and GABAC receptors. Charge reversal experiments combined with data from activation by the partial agonist beta-alanine show that in GABAC receptors there is a salt bridge between Glu-92 (in loop 2) and Arg-258 (in the pre-M1 region), which is involved in receptor gating. The equivalent residues in the 5-HT3 receptor are important for receptor expression, but charge reversal experiments do not restore function, indicating that there is not a salt bridge here. There is, however, an interaction between Glu-215 (loop 9) and Arg-246 (pre-M1) in the 5-HT3 receptor, although the coupling energy determined from mutant cycle analysis is lower than might be expected for a salt bridge. Overall the data show that charged residues at the extracellular/transmembrane domain interfaces in 5-HT3 and GABAC receptors are important and that specific, but not equivalent, molecular interactions between them are involved in the gating process. Thus, we propose that the molecular details of interactions in the transduction pathway between the binding site and the pore can differ between different Cys-loop receptors.  相似文献   

10.
Interleukin-3 (IL-3) is a cytokine produced by activated T-cells and mast cells that is active on a broad range of hematopoietic cells and in the nervous system and appears to be important in several chronic inflammatory diseases. In this study, alanine substitutions were used to investigate the role of residues of the human beta-common (hbetac) receptor and the murine IL-3-specific (beta(IL-3)) receptor in IL-3 binding. We show that the domain 1 residues, Tyr(15) and Phe(79), of the hbetac receptor are important for high affinity IL-3 binding and receptor activation as shown previously for the related cytokines, interleukin-5 and granulocyte-macrophage colony-stimulating factor, which also signal through this receptor subunit. From the x-ray structure of hbetac, it is clear that the domain 1 residues cooperate with domain 4 residues to form a novel ligand-binding interface involving the two protein chains of the intertwined homodimer receptor. We demonstrate by ultracentrifugation that the beta(IL-3) receptor is also a homodimer. Its high sequence homology with hbetac suggests that their structures are homologous, and we identified an analogous binding interface in beta(IL-3) for direct IL-3 binding to the high affinity binding site in hbetac. Tyr(21) (A-B loop), Phe(85), and Asn(87) (E-F loop) of domain 1; Ile(320) of the interdomain loop; and Tyr(348) (B'-C' loop) and Tyr(401) (F'-G' loop) of domain 4 were shown to have critical individual roles and Arg(84) and Tyr(317) major secondary roles in direct murine IL-3 binding to the beta(IL-3)receptor. Most surprising, none of the key residues for direct IL-3 binding were critical for high affinity binding in the presence of the murine IL-3 alpha receptor, indicating a fundamentally different mechanism of high affinity binding to that used by hbetac.  相似文献   

11.
The binding sites of Cys-loop receptors are formed from at least six loops (A-F). Here we have used mutagenesis, radioligand binding, voltage clamp electrophysiology, and homology modeling to probe the role of two residues in loop A of the 5-HT3 receptor: Asn128 and Glu129. The data show that substitution of Asn128, with a range of alternative natural and unnatural amino acids, changed the EC50 (from approximately 10-fold more potent to approximately 10-fold less potent than that of the wild type), increased the maximal peak current for mCPBG compared to 5-HT (R max) 2-19-fold, and decreased n H, indicating this residue is involved in receptor gating; we propose Asn128 faces away from the binding pocket and plays a role in facilitating transitions between conformational states. Substitutions of Glu129 resulted in functional receptors only when the residue could accept a hydrogen bond, but with both these and other substitutions, no [(3)H]granisetron binding could be detected, indicating a role in ligand binding. We propose that Glu129 faces into the binding pocket, where, through its ability to hydrogen bond, it plays a critical role in ligand binding. Thus, the data support a modified model of the 5-HT3 receptor binding site and show that loop A plays a critical role in both the ligand binding and function of this receptor.  相似文献   

12.
The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten β-strands in the extracellular domain and four α-helical transmembrane domains (M1–M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2–M3 loop have been implicated in receptor activation. The current “conformational change wave” hypothesis suggests that binding of a ligand initiates a rotation of the β-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2–M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.  相似文献   

13.
As in most other seven-transmembrane receptors, the central disulfide bridge from the extracellular end of TM-III to the middle of the second extracellular loop was essential for ligand binding in the NK1 receptor. However, introduction of "extra", single Cys residues in the second extracellular loop, at positions where disease-associated Cys substitutions impair receptor function in the vasopressin V2 receptor and in rhodopsin, did not cause mispairing with the Cys residues involved in this central disulfide bridge. Cys residues were introduced in the N-terminal extension and in the third extracellular loop, respectively, in such a way that disulfide bridge formation could be monitored by loss of substance P binding and breakage of the bridge could be monitored by gain of ligand binding. This disulfide bridge formed spontaneously in the whole population of receptors and could be titrated with low concentrations of reducing agent, dithiothreitol. Another putative disulfide bridge "switch" was constructed at the extracellular ends of TM-V and -VI, i.e., at positions where a high-affinity zinc site previously had been constructed with His substitutions. Disulfide bridge formation at this position, monitored by loss of binding of the nonpeptide antagonist [3H]LY303.870, occurred spontaneously only in a small fraction of the receptors. It is concluded that disulfide bridges form readily between Cys residues introduced appropriately in the N-terminal extension and the third extracellular loop, whereas they form with more difficulty between Cys residues placed at the extracellular ends of the transmembrane segments even at positions where high-affinity metal ion sites can be constructed with His residues.  相似文献   

14.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

15.
The initial coupling between ligand binding and channel gating in the human α7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the α7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding.  相似文献   

16.
Ligand-gated ion channels (LGICs) mediate rapid chemical neurotransmission. This gene superfamily includes the nicotinic acetylcholine, GABAA/C, 5-hydroxytryptamine type 3, and glycine receptors. A signature disulfide loop (Cys loop) in the extracellular domain is a structural motif common to all LGIC member subunits. Here we report that a highly conserved aspartic acid residue within the Cys loop at position 148 (Asp-148) of the glycine receptor alpha1 subunit is critical in the process of receptor activation. Mutation of this acidic residue to the basic amino acid lysine produces a large decrease in the potency of glycine, produces a decrease in the Hill slope, and converts taurine from a full agonist to a partial agonist; these data are consistent with a molecular defect in the receptor gating mechanism. Additional mutation of Asp-148 shows that alterations in the EC50 for agonists are dependent upon the charge of the side chain at this position and not molecular volume, polarity, or hydropathy. This study implicates negative charge at position Asp-148 as a critical component of the process in which agonist binding is coupled to channel gating. This finding adds to an emerging body of evidence supporting the involvement of the Cys loop in the gating mechanism of the LGICs.  相似文献   

17.
The Class A family of guanine nucleotide-binding protein (G protein)-coupled receptors that includes receptors for motilin, ghrelin, and growth hormone secretagogue (GHS) has substantial potential importance as drug targets. Understanding of the molecular basis of hormone binding and receptor activation should provide insights helpful in the development of such drugs. We previously reported that Cys residues and the perimembranous residues in the extracellular loops and amino-terminal tail of the motilin receptor are critical for peptide ligand, motilin, binding and biological activity. In the current work, we focused on the predicted extracellular domains of the human GHS receptor 1a, and identified functionally important residues by using sequential deletions ranging from one to twelve amino acid residues and site-directed replacement mutagenesis approach. Each construct was transiently expressed in COS cells, and characterized for ghrelin- and growth hormone releasing peptide (GHRP)-6-stimulated intracellular calcium responses and ghrelin radioligand binding. Cys residues in positions 116 and 198 in the first and second extracellular loops and the perimembranous Glu187 residue in the second extracellular loop were critical for ghrelin and GHRP-6 biological activity. These results suggest that Cys residues in the extracellular domains in this family of Class A G protein-coupled receptor is likely involved in the highly conserved and functionally important disulfide bond, and that the perimembranous residues contribute peptide ligand binding and signaling.  相似文献   

18.
In the Cys loop superfamily of ligand-gated ion channels, a global conformational change, initiated by agonist binding, results in channel opening and the passage of ions across the cell membrane. The detailed mechanism of channel gating is a subject that has lent itself to both structural and electrophysiological studies. Here we defined a gating interface that incorporates elements from the ligand binding domain and transmembrane domain previously reported as integral to proper channel gating. An overall analysis of charged residues within the gating interface across the entire superfamily showed a conserved charging pattern, although no specific interacting ion pairs were conserved. We utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study extensively the gating interface of the mouse muscle nicotinic acetylcholine receptor. We found that charge reversal, charge neutralization, and charge introduction at the gating interface are often well tolerated. Furthermore, based on our data and a reexamination of previously reported data on gamma-aminobutyric acid, type A, and glycine receptors, we concluded that the overall charging pattern of the gating interface, and not any specific pairwise electrostatic interactions, controls the gating process in the Cys loop superfamily.  相似文献   

19.
Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.  相似文献   

20.
SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1 or SIRPα/BIT) is an immunoglobulin (Ig) superfamily transmembrane receptor and a member of the signal regulatory protein (SIRP) family involved in cell-cell interaction. SHPS-1 binds to its ligand CD47 to relay an inhibitory signal for cellular responses, whereas SIRPβ, an activating member of the same family, does not bind to CD47 despite sharing a highly homologous ligand-binding domain with SHPS-1. To address the molecular basis for specific CD47 recognition by SHPS-1, we present the crystal structure of the ligand-binding domain of murine SHPS-1 (mSHPS-1). Folding topology revealed that mSHPS-1 adopts an I2-set Ig fold, but its overall structure resembles IgV domains of antigen receptors, although it has an extended loop structure (C′E loop), which forms a dimer interface in the crystal. Site-directed mutagenesis studies of mSHPS-1 identified critical residues for CD47 binding including sites in the C′E loop and regions corresponding to complementarity-determining regions of antigen receptors. The structural and functional features of mSHPS-1 are consistent with the human SHPS-1 structure except that human SHPS-1 has an additional β-strand D. These results suggest that the variable complementarity-determining region-like loop structures in the binding surface of SHPS-1 are generally required for ligand recognition in a manner similar to that of antigen receptors, which may explain the diverse ligand-binding specificities of SIRP family receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号