首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although ganglia from neonatal mouse sympathetic ganglia require nerve growth factor (NGF) for survival in culture, explanted sympathetic ganglia from early embryonic stages do not require added NGF for survival and growth. To determine whether the change in growth factor requirement is due to changes in the neurons themselves, to variations in neuronal populations, or to changes in nonneuronal cells, we examined the response to growth factors by dissociated sympathetic neurons at various stages of development. Results indicate that neurons from the 14-day gestational (E14) superior cervical ganglion (SCG) do not require NGF for initial survival and neurite extension, but do require the conditioned medium neurite extension factor, CMF. By 2 to 3 days thereafter, whether in vivo or in culture, most neurons have developed a requirement for NGF for survival in culture. During the same period, there is a concomitant increase in responsiveness to NGF alone as a trophic agent. Changes in response to NGF are not due to changes in NGF content of ganglia, to interactions in culture with nonneuronal cells, or to age-related differences in NGF requirements for maximum survival. The changes in growth factor requirements may be related to mechanisms regulating specificity of nerve-target connections.  相似文献   

2.
The effect of nerve growth factor (NGF) on the development of cholinergic sympathetic neurons was studied in cultures grown either on monolayers of dissociated rat heart cells or in medium conditioned by them. In the presence of rat heart cells the absolute requirement of neurons for exogenous NGF was partially spared. The ability of heart cells to support neuronal survival was due at least in part to production of a diffusable NGF-like substance into the medium. Although some neurons survived on the heart cell monolayer without added NGF, increased levels of exogenous NGF increased neuronal survival until saturation was achieved at 0.5 microgram/ml 7S NGF. The ability of neurons to produce acetylcholine (ACh) from choline was also dependent on the level of exogenous NGF. In mixed neuron-heart cell cultures, NGF increased both ACh and catecholamine (CA) production per neuron to the same extent; saturation occurred at 1 microgram/ml 7S NGF. As cholinergic neurons developed in culture, they became less dependent on NGF for survival and ACh production, but even in older cultures approximately 40% of the neurons died when NGF was withdrawn. Thus, NGF is as necessary for survival, growth, and differentiation of sympathetic neurons when the neurons express cholinergic functions as when the neurons express adrenergic functions (4, 5).  相似文献   

3.
Quantitative studies on the nerve growth factor (NGF) requirement of chick embryo sympathetic neurons in dissociated cell culture revealed the following. (i) The minimum concentration of 2.5 S NGF required for survival of maximal numbers of neurons is about 0.5 ng/ml (~2 × 10?11M). In culture, this concentration of NGF appears not to be stable for more than 24 hr. Long-term neuronal maintenance with medium changes twice weekly requires a minimum of 5 ng/ml of NGF. (ii) At 24 hr after plating in medium containing 10% fetal bovine serum, neuronal survival is less than optimal at NGF concentrations above 5 ng/ml; in medium with 5% horse serum, survival is constant with up to 5000 ng/ml of NGF. (iii) Survival of neurons after 1 week in culture was less than optimal at NGF concentrations greater than 50 ng/ml, even in medium containing horse serum. (iv) No correlation was observed between the level of NGF (0.5–500 ng/ml) and the estimated neuronal somatic volumes up to 1 month in vitro. (v) Withdrawal of NGF, even after 4 weeks of culture, resulted in degeneration of nerve cell bodies and processes.  相似文献   

4.
Sympathetic neuronal survival induced by retinal trophic factors.   总被引:5,自引:0,他引:5  
Neuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF). Retina Conditioned Media (RCM) from explants of embryonic day 11 retinas maintained for 4 days in vitro supported 90% of E10 chick sympathetic neurons after 48 h. Conditioned medium from purified chick retinal Muller glial cells supported nearly 100% of E10 chick sympathetic neurons. Anti-NGF (1 microg/mL) blocked the survival effect of NGF, but did not block the trophic effect of RCM. Neither BDNF nor NT4 (0.1-50 ng/mL) supported E10 sympathetic neuron survival. Incubation of chimeric immunoglobulin-receptors TrkA, TrkB, or TrkC had no effect on RCM-induced sympathetic neuron survival. The survival effects were not blocked by anti-GDNF, anti-TGFbeta, and anti-CNTF and were not mimicked by FGFb (0.1-10 nM). LY294002 at 50 microM, but not PD098059 blocked sympathetic survival induced by RCM. Further, the combination of RCM and NGF did not result in an increase in neuronal survival compared with NGF alone (82% survival after 48 h). The secreted factor in RCM is retained in subfractions with a molecular weight above 100 kDa, binds to heparin, and is unaffected by dialysis, but is heat sensitive. Our results indicate the presence of a high-molecular weight retinal secreted factor that supports sympathetic neurons in culture.  相似文献   

5.
Non-transformed human glial cells obtained from brain biopsies (lines U-787 CG, U-1169 CG and U-1508 CG) release to their culture medium a factor which, in bioassay, induces neurite outgrowth in spinal and sympathetic embryonic chick ganglia. The neurite-stimulating activity, which was enhanced after pressure dialysis of glial-conditioned medium, is inhibited by specific antiserum prepared to mouse βnerve growth factor (NGF). The glial factor was partially purified by gel filtration on Sephadex G-200 of concentrated, serum-containing, conditioned medium. The activity eluted close to a molecular weight of 30000, as did mouse NGF run under identical conditions. Ion-exchange chromatography on DEAE-Sepharose CL-6B and flat-bed electrofocusing of conditioned medium showed the activity to be associated with a heat-labile entity having an isoelectric point of about 4.1. All purified preparations were blocked by anti(mouse)-βNGF. The results demonstrate the existence of a human glial NGF which in several respects resembles the mouse submandibular gland NGF.  相似文献   

6.
The effects of phorbol esters were investigated on the survival of chick sympathetic neurons in a serum-free culture medium. The protein kinase C activator phorbol 12,13-dibutyrate (PDB) supported about 40% of the plated sympathetic neurons. This number was comparable to that supported by nerve growth factor (NGF). A combination of phorbol ester and NGF did not significantly increase the number of surviving neurons. Phorbol ester-supported sympathetic neurons possessed desipramine-sensitive [3H]-norepinephrine uptake mechanism, and therefore were noradrenegic in character. Two days after the start of cultures, if NGF was replaced by phorbol ester, or phorbol ester was replaced by NGF, the number of surviving sympathetic neurons was essentially the same in both groups, and the uptake of [3H]norepinephrine was also comparable when examined 2 days after the switchover. Interchangeability between phorbol ester and NGF in the survival of sympathetic neurons suggests that both agents act on the same subpopulation of neurons of the chick sympathetic ganglia. The protein kinase C activity of cytosol and particulate fractions of NGF-supported neurons was 0.14 and 0.09 pmol/min/mg protein, respectively. In phorbol ester-supported neurons the activity in the particulate fraction increased by about fivefold. Removal of the phorbol ester after 2 days resulted in restoration of the enzyme activity in less than 1 h, and readdition of the phorbol ester again increased the activity by fivefold. When NGF was added to these neurons (1 microgram for 15 min), there was no change in the enzyme activity. Phorbol 13-acetate was ineffective in supporting sympathetic neurons in culture, as well as in enhancing protein kinase C activity. We also compared the protein kinase C activity of sympathetic neurons supported in culture by NGF and excess potassium (35 mM K+) Neurons supported in culture by 35 mM K+ for 2 days had almost eightfold more protein kinase C activity in their particulate fraction than in cytosol fraction. In NGF-supported neurons were acutely treated with excess K+, the protein kinase C activity was increased in the particulate fraction by about sevenfold in a concentration- and time-dependent manner. Excess K+ plus phorbol ester did not produce an additive effect on protein kinase C activity. PDB and excess K+ had no effect on cyclic AMP content of sympathetic neurons. In summary, the present data suggest that the neurotrophic action of PDB and excess K+ is probably mediated through protein kinase C.  相似文献   

7.
Neuronal survival in the vertebrate peripheral nervous system depends on neurotrophic factors available from target tissues. In an attempt to identify novel survival factors, we have studied the effect of secreted factors from retinal cells on the survival of chick sympathetic ganglion neurons. Embryonic day 10 sympathetic neurons undergo programmed cell death after 48 h without appropriate levels of nerve growth factor (NGF). Retina Conditioned Media (RCM) from explants of embryonic day 11 retinas maintained for 4 days in vitro supported 90% of E10 chick sympathetic neurons after 48 h. Conditioned medium from purified chick retinal Muller glial cells supported nearly 100% of E10 chick sympathetic neurons. Anti‐NGF (1 μg/mL) blocked the survival effect of NGF, but did not block the trophic effect of RCM. Neither BDNF nor NT4 (0.1–50 ng/mL) supported E10 sympathetic neuron survival. Incubation of chimeric immunoglobulin‐receptors TrkA, TrkB, or TrkC had no effect on RCM‐induced sympathetic neuron survival. The survival effects were not blocked by anti‐GDNF, anti‐TGFβ, and anti‐CNTF and were not mimicked by FGFb (0.1–10 nM). LY294002 at 50 μM, but not PD098059 blocked sympathetic survival induced by RCM. Further, the combination of RCM and NGF did not result in an increase in neuronal survival compared with NGF alone (82% survival after 48 h). The secreted factor in RCM is retained in subfractions with a molecular weight above 100 kDa, binds to heparin, and is unaffected by dialysis, but is heat sensitive. Our results indicate the presence of a high‐molecular weight retinal secreted factor that supports sympathetic neurons in culture. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 13–23, 2002  相似文献   

8.
The response of embryonic chick nodose ganglion (neural placode-derived) and dorsal root ganglion (neural crest-derived) sensory neurons to the survival and neurite-promoting activity of brain-derived neurotrophic factor (BDNF) was studied in culture. In dissociated, neuron-enriched cultures established from chick embryos between Day 6 (E6) and Day 12 (E12) of development, both nodose ganglion (NG) and dorsal root ganglion (DRG) neurons were responsive on laminin-coated culture dishes to BDNF. In the case of NG, BDNF elicited neurite outgrowth from 40 to 50% of the neurons plated at three embryonic ages; E6, E9, and E12. At the same ages, nerve growth factor (NGF) alone or in combination with BDNF, had little or no effect upon neurite outgrowth from NG neurons. The response of NG neurons to BDNF was dose dependent and was sustainable for at least 7 days in culture. Surprisingly, in view of a previous study carried out using polyornithine as a substrate for neuronal cell attachment, on laminin-coated dishes BDNF also sustained survival and neurite outgrowth from a high percentage (60-70%) of DRG neurons taken from E6 embryos. In marked contrast to NG neurons, the combined effect of saturating levels of BDNF and NGF activity on DRG neurons was greater than the effect of either agent alone at all embryonic ages studied. Under similar culture conditions, BDNF did not elicit survival and neurite outgrowth from paravertebral chain sympathetic neurons or parasympathetic ciliary ganglion neurons. We propose that primary sensory neurons, regardless of their embryological origin, are responsive to a "central-target" (CNS) derived neurotrophic factor--BDNF, while they are differentially responsive to "peripheral-target"-derived growth factors, such as NGF, depending on whether the neurons are of neural crest or placodal origin.  相似文献   

9.
10.
Medium conditioned by embryonic chick heart cells is known to support extensive neurite outgrowth from autonomic and sensory neurons. In the present report we describe the use of microcarrier cell culture with serum-free media to scale up the production of the nerve growth-stimulating factors. A growth medium composed of DME /F10 supplemented with insulin, transferrin, human serum albumin and fibronectin in combination with a low molecular weight (MW) fraction of fetal calf serum (FCS) or a mixture of FGF, dexamethasone, calmodulin and thrombin supported the heart cell proliferation at a rate similar to that of medium with 10% FCS. Furthermore, the level of successively accumulated nerve growth activity measured in a bioassay with sympathetic ganglia proved to be nearly equivalent to what was obtained when cells were grown in medium containing serum. The results confirm the potential of microcarrier cell culture in serum-free media for the production and subsequent recovery of a specific cell product.  相似文献   

11.
Neurons were dissociated from the sympathetic ganglia of embryonic chicks, and cultured in the absence of non-neuronal cells. Both nerve growth factor (NGF) and high concentrations of extracellular K+ supported neuronal survival, and these effects were independent of the presence of serum in the culture medium. Only 60% of the neurons survived in response to 35 mM K+, and survival was not increased when both NGF and K+ were present together. It was, however, possible to maintain essentially all the neurons in culture with either NGF or high K+ concentrations if the culture substrate had been pretreated with heart cell-conditioned medium (which did not itself support neuronal survival). These observations are consistent with a common mechanism of action of both K+ and NGF for the survival of cultured embryonic neurons.  相似文献   

12.
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2’-dexoxyuridine (BrdU)-positive cells, BrdU- positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.  相似文献   

13.
Purification of the Chick Eye Ciliary Neuronotrophic Factor   总被引:26,自引:11,他引:26  
Dissociated 8-day chick embryo ciliary ganglionic neurons will not survive for even 24 h in culture without the addition of specific supplements. One such supplement is a protein termed the ciliary neuronotrophic factor (CNTF) which is present at very high concentrations within intraocular tissues that contain the same muscle cells innervated by ciliary ganglionic neurons in vivo. We describe here the purification of chick eye CNTF by a 2 1/2-day procedure involving the processing of intraocular tissue extract sequentially through DE52 ion-exchange chromatography, membrane ultrafiltration-concentration, sucrose density gradient ultracentrifugation, and preparative sodium dodecyl sulfate-polyacrylamide gradient electrophoresis. An aqueous extract of the tissue from 300 eyes will yield about 10-20 micrograms of biologically active, electrophoretically pure CNTF with a specific activity of 7.5 X 10(6) trophic units/mg protein. Purified CNTF has an Mr of 20,400 daltons and an isoelectric point of about 5, as determined by analytical gel electrophoresis. In addition to supporting the survival of ciliary ganglion neurons, purified CNTF also supports the 24-h survival of cultured neurons from certain chick and rodent sensory and sympathetic ganglia. CNTF differs from mouse submaxillary nerve growth factor (NGF) in molecular weight, isoelectric point, inability to be inactivated by antibodies to NGF, ability to support the in vitro survival of the ciliary ganglion neurons, and inability to support that of 8-day chick embryo dorsal root ganglionic neurons. Thus, CNTF represents the first purified neuronotrophic factor which addresses parasympathetic cholinergic neurons.  相似文献   

14.
During embryonic development, spinal motor neurons require muscle-derived trophic factors for their survival and growth. We have recently isolated a protein from muscle that is not laminin but that still stimulates neurite outgrowth from embryonic neurons in culture. In the present study, we investigated whether this protein, which we refer to as muscle-derived neurite-promoting factor (NPF), could also promote the survival and growth of motor neurons in culture. Spinal motor neurons were isolated from 6-day-old chicken embryos by a metrizamide step-gradient centrifugation protocol. Most large cells (putative motor neurons) were found in the upper metrizamide fraction (0%–6.8% interface; fraction I). Motor neurons were identified by increased specific activity of choline acetyltransferase (CAT) and by their propensity to transport retrogradely either wheat germ agglutininhorseradish peroxidase or the fluorescent dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine per chlorate (diI), when those substances were injected into the target field. Labeled motor neurons were 2.6-fold enriched in fraction I and the specific CAT activity was 4.4-fold increased in fraction I as compared to unfractionated cells. When motor neurons were grown on muscle-derived NPF, the protein supported the survival of at least 21% of the neurons for as long as 6 days in culture. The protein showed no significant effect on either CAT specific activity or on high-affinity choline uptake by neurons. There was a substantial increase from 21% to 38% of the survival of motor neurons when a combination of muscle-derived NPF also promoted the survival of sensory neurons and sympathetic neurons in culture. Our results demonstrate that a neurite-promoting protein derived from muscle promotes both the survival and the outgrowth of neurites from cultured spinal motor neurons as well as from sensory and sympathetic neurons.  相似文献   

15.
During embryonic development, spinal motor neurons require muscle-derived trophic factors for their survival and growth. We have recently isolated a protein from muscle that is not laminin but that still stimulates neurite outgrowth from embryonic neurons in culture. In the present study, we investigated whether this protein, which we refer to as muscle-derived neurite-promoting factor (NPF), could also promote the survival and growth of motor neurons in culture. Spinal motor neurons were isolated from 6-day-old chicken embryos by a metrizamide step-gradient centrifugation protocol. Most large cells (putative motor neurons) were found in the upper metrizamide fraction (0%-6.8% interface; fraction I). Motor neurons were identified by increased specific activity of choline acetyltransferase (CAT) and by their propensity to transport retrogradely either wheat germ agglutinin-horseradish peroxidase or the fluorescent dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine per chlorate (diI), when those substances were injected into the target field. Labeled motor neurons were 2.6-fold enriched in fraction I and the specific CAT activity was 4.4-fold increased in fraction I as compared to unfractionated cells. When motor neurons were grown on muscle-derived NPF, the protein supported the survival of at least 21% of the neurons for as long as 6 days in culture. The protein showed no significant effect on either CAT specific activity or on high-affinity choline uptake by neurons. There was a substantial increase from 21% to 38% of the survival of motor neurons when a combination of muscle-derived NPF and laminin was used as the substrate. Muscle-derived NPF also promoted the survival of sensory neurons and sympathetic neurons in culture. Our results demonstrate that a neurite-promoting protein derived from muscle promotes both the survival and the outgrowth of neurites from cultured spinal motor neurons as well as from sensory and sympathetic neurons.  相似文献   

16.
Parasympathetic neurons from 8-day-old chick embryo ciliary ganglia were grown in culture for 24 hr in the presence of extracts of chick heart from animals aged 7 days in ovo to 8 days posthatching. The biological activity of these cardiac extracts with respect to both neuronal survival and nerve fiber production increased with age of the donor animal to reach a plateau around hatching. Following polyacrylamide gel isoelectric focusing of posthatching chick heart and eye, a peak in activity that supports parasympathetic neuronal survival was found associated with eluates of gel slices of pH between 4.5 and 5.5 for both tissues. Our results suggest that the factor responsible for parasympathetic neuronal survival is common to at least two parasympathetic target organs.  相似文献   

17.
Cultured embryonic heart cells release a powerful inducer of neurite outgrowth into the surrounding medium. The present report demonstrates that these cells also deposit material which induces neurite outgrowth directly onto their culture substratum. Thus, embryonic heart cells condition both the culture medium and the culture substratum with respect to neurite outgrowth. Conditioned substrata were prepared by incubating heart cell monolayers in EDTA until the cells released from the substratum and were discarded. When dissociated neurons from ciliary or sympathetic chain ganglia were plated in fresh medium onto a conditioned substratum, neurite outgrowth was initiated in 80–95% of the neurons within 60 min. The neurite-inducing activity is trypsin sensitive, but is not inactivated by antibodies to the cell attachment protein fibronectin, by the membrane-solubilizing detergent Triton X-100, or by the enzymes collagenase, RNase, or DNase. The factor in conditioned medium which also induces neurite outgrowth depends for its activity on attachment to an artificial polyornithine substratum, under which condition it appears to promote adhesion of neuronal filopodia to the substratum. Thus, neurite outgrowth in these two culture systems occurs only if the substratum is conditioned by the appropriate extracellular materials: conditioned either directly by the deposition of heart cell products or indirectly by the binding of a conditioned medium factor to the polyornithine substratum. These substratum-conditioning factors may be related to those components of the extracellular matrix which support neurite outgrowth in vivo.  相似文献   

18.
The presence of nerve growth factor receptors and the imipramine-sensitive uptake of catecholamines in sympathetic neurons of chick embryos were investigated by autoradiography. Neurons were dissociated from paravertebral ganglia of different embryonic ages and receptors and catecholamine uptake were then determined both at the beginning of culture and after 2 days in culture, at which time the number of surviving neurons is determined by the survival factors present. It was found that while essentially all the neurons specifically bound 125I-NGF both after dissociation and at the end of the culture period, only 60% of the neurons take up [3H]norepinephrine after dissociation, and this proportion remained constant through the culture period under conditions where all the neurons survived. All of the neurons maintained by NGF in culture (35% of the total) displayed this uptake, and in contrast, only one-quarter of those maintained by heart cell-conditioned medium alone (60% of the total) took up catecholamines. The uptake was shown to be neither induced by NGF nor suppressed by heart cell-conditioned medium. These results support the hypothesis that chick sympathetic ganglia contain discrete subpopulations of neurons which may be selected in culture by virtue of their different requirements for survival factors.  相似文献   

19.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

20.
To study the effect of nerve growth factor (NGF) on neuronal survival, growth, and differentiation, cultures of dissociated neonatal rat sympathetic neurons virtually free of other cell types were maintained for 3-4 wk. In the absence of NGF, the neurons did not survive for more than a day. Increased levels of NGF increased neuronal survival and growth (total protein and total lipid phosphate); saturation occurred at 0.5 microgram/ml 7S NGF. Neuronal differentiation examined by measuring catecholamine (CA) production from tyrosine also depended on the level of NGF in the culture medium. As the NGF concentration was raised, CA production per neuron, per nanogram protein, or per picomole lipid phosphate increased until saturation was achieved between 1 and 5 microgram/ml 7S NGF. Thus, NGF induces neuronal survival, growth, and differentiation of CA production in a dose-dependent fashion. Neuronal growth and differentiation were quantitatively compared in the presence of the high and low molecular weight forms of NGF; no significant functional differences were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号