首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoantisera from female rabbits injected with rabbit whole semen have been used to study the appearance of cell surface isoantigens during spermatogenesis. Using isoantiserum IgG and adjuvant control IgG the presence of surface isoantigens on separated pachytene spermatocyte populations and populations of cells at more advanced stages of differentiation was confirmed with fluorescein-labeled goat IgG anti-rabbit IgG. The label was uniformly dispersed over the cell surface on cells labeled at 4°C but occurred in caps on cells warmed to 37°C indicating isoantigen mobility within the plane of the membrane. Residual bodies and mature spermatozoa did not show cap formation. Spermatogonia, Leydig cells, and Sertoli cells were not labeled. These observations were confirmed at the ultrastructural level with peroxidase-conjugated goat IgG anti-rabbit IgG. The percentage of the cell surface labeled was determined on cells at specific stages of spermatogenesis by stereological analysis. No significant surface labeling was observed on spermatogonia, Leydig cells, or Sertoli cells. The percentage of label bound to the surface of spermatogenic cells increased from approximately 4% in the pachytene spermatocytes to greater than 96% in the most mature testicular spermatids.  相似文献   

2.
Ontogenesis and localization of surface antigens in spermatogenic cells have been demonstrated. Male Lewis/Wistar rats, inbred for more than 300 generations, were challenged with pachytene spermatocytes isolated from immature animals of the same strain. Serological tests of the resulting immunoglobulin (rat anti-rat pachytene spermatocyte IgG) were based on immunohistochemistry using fluorescein- or horseradish peroxidase-conjugated rabbit anti-rat IgG. For complementdependent cytotoxicity assays, rabbit heteroantiserum directed against rat pachytene spermatocytes was employed. Challenge of inbred rats with pachytene spermatocytes resulted in the formation of antibodies (rat anti-rat pachytene spermatocyte IgG) which specifically bound to the surfaces of pachytene spermatocytes and all successive classes of germinal cells. This antibody preparation did not bind to somatic cells of any organ examined, including the testis, nor did it bind to germinal cells less advanced than pachytene spermatocyte. Rat anti-rat pachytene spermatocyte IgG, after absorption with spermatozoa from epididymides of Lewis/Wistar rats, did not bind to elongated spermatids or spermatozoa. However, the antiserum still specifically bound to pachytene spermatocytes and, to a lesser extent, to successive classes of germinal cells less advanced than early spermatids, and to residual bodies. The inbred animals challenged with pachytene spermatocytes also developed aspermatogenesis as part of the immunological response. The data are discussed in relation to the possible role of specific surface antigenic determinants on germinal cells in their interactions during differentiation.  相似文献   

3.
The selective partitioning of cell membrane components during mouse spermatogenesis has been examined using a heterologous antibody raised against isolated type B spermatogonia. The anti-type B spermatogonia rabbit IgG (ATBS) binds to isolated populations of mouse primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene spermatocytes, leptotene/zygotene spermatocytes, pachytene spermatocytes, round spermatids, residual bodies, and mature spermatozoa. Although immunofluorescent labeling is uniformly distributed on the cell surface of early spermatogenic cells, a discrete topographical localization of IgG is observed on testicular, epididymal, and vas deferens spermatozoa. The convex surface of the acrosome, postacrosomal region, and tail are labeled. Antibody does not bind to a broad area corresponding to the concave region of the acrosome. The antibody also binds to mouse somatic cells including Sertoli cells, Leydig cells, thymocytes, and splenocytes, but not to mature spermatozoa of the vole, rat, hamster, guinea pig, rabbit, or human. ATBS, after absorption with mouse splenocytes or thymocytes, does not react with any somatic cells examined by fluorescence except with Sertoli cells. In addition, all reactivity with testicular, epididymal, and was deferens spermatozoa is abolished. However, spermatogenic cells at earlier stages of differentiation, including residual bodies, still react strongly with the absorbed antibody. The number of surface receptor sites per cell for absorbed ATBS ranges from approximately 3 million on primitive type A spermatogonia to 1 million on round spermatids and on residual bodies. Spermatozoa, however, have only 0.003 million binding sites for absorbed ATBS, in contrast to 10 million sites for the unabsorbed antibody. It appears that receptor sites for absorbed ATBS are not masked by components of epididymal secretions. These data imply, therefore, that specific mechanisms operate at the level of the cell membrane during spermiogenesis to insure that some surface components, not required in the mature spermatozoon, are removed selectively by partitioning to that portion of the spermatid membrane destined for the residual body.  相似文献   

4.
Cell surface antigens that appear in a defined temporal sequence during mouse spermatogenesis were previously detected serologically, but not identified biochemically, with four heterologous antibodies prepared against purified populations of pachytene spermatocytes (AP), round spermatids (ARS), vas deferens spermatozoa (AVDS), and mixed seminiferous cells (ASC) [Millette and Bellvé, J Cell Biol 74:86–97, 1977]. These antigens have now been identified immunochemically on nitrocellulose blots from SDS polyacrylamide gels. Three antisera (AP, ARS, and ASC) recognize a similar subset of determinants on one-dimensional immunoblots of germ cells and plasma membranes prepared from a mixed population of late spermatogenic cells. Comparisons of minor bands to reveal differences among these antisera. AVDS exhibits the least complex binding pattern. The results indicate that at least ten surface constituents appear during the pachytene stage of meiosis, coincident with a period of maximal RNA and protein synthesis [Monesi, Exp Cell Res 39:197–224, 1965]. Furthermore, two-dimensional immunoblot comparisons of plasma membranes isolated from pachytene spermatocytes and round spermatids reveal differences between surface determinants detectable at these two spermatogenic stages. For example, ASC recognizes two newly described proteins that are restricted to pachytene spermatocytes (? Mr 57,000, pI 6.45) and to round spermatids (? Mr 39,500, pI 4.85), respectively.  相似文献   

5.
The purpose of this study was to determine the localization of calmodulin in the developing mouse testis by the indirect immunoperoxidase method. In addition, the amount of calmodulin in pachytene spermatocytes, spermatids, and residual bodies isolated from the mouse testis and epididymal spermatozoa was quantitated by the adenylate cyclase activation assay and by enzyme immunoassay. The relative levels of calmodulin in the developing mouse testis and in the isolated testicular germ cells were confirmed by western transfer staining. The level of immunoreactive calmodulin was very low in the testes from immature animals. In testes from the mature mouse, calmodulin was found to be localized in spermatocytes and spermatids, but was not found in spermatogonia, Sertoli cells, and interstitial cells. By contrast, immunochemical staining of tubulin was extremely intense in Sertoli cells. Biochemical determinations also showed that pachytene spermatocytes, round spermatids, spermatozoa, and residual bodies contained 14.9 micrograms, 15.8 micrograms, 2.3 micrograms and 5.2 micrograms of calmodulin per mg of protein, respectively. Both the immunochemical and the biochemical studies revealed that levels of calmodulin were high in the spermatocytes and in the round spermatids, as compared to the level in spermatozoa. This fact strongly suggests that the large amount of calmodulin in mammalian testes may be associated primarily with meiotic divisions and/or spermatogenesis.  相似文献   

6.
The ability of the male gonad to convert androgens into estrogens is well known. According to age, aromatase activity has been already measured in immature and mature rat Leydig cells as well as in Sertoli cells. Recently, in different studies, a cytochrome P450arom has even been immunolocalized not only in Leydig cells but also in germ cells of mouse, brown bear and rooster whereas in pig, ram and human the aromatase is mainly present in Leydig cells. Our purpose was to investigate the testicular cell distribution of cytochrome P450arom mRNA in adult rat using RT-PCR. With 2 highly specific primers located on exons 8 and 9, we have been able to amplify a 289 bp aromatase fragment not only in Leydig cells and Sertoli cells but more importantly in highlyenriched preparations of pachytene spermatocytes, round spermatids and testicular spermatozoa. These amplified products showed 100% homology with the corresponding fragment of the rat ovary cDNA. In parallel, using an anti-human cytochrome P450arom antibody we have demonstrated the presence of a 55 kDa protein in seminiferous tubules and crude germ cell (pachytene spermatocytes and round spermatids) preparation of the mature rat. After incubation with tritiated androstenedione, the aromatase activities in the microsomal fractions were 3.12±0.19 pmoles/mg/h in the testis, 1.25±0.13 in the seminiferous tubules and 1.53±0.15 in the crude germ cells. In purified testicular spermatozoa the aromatase activity was 2.96±0.69 pmoles/mg/h and found to be 5-fold higher when compared to that of either purified pachytene spermatocytes or round spermatids. Using a quantitative RT-PCR method with a standard cDNA 29 bp shorter, we have compared the amount of cytochrome P450arom mRNA in mature rat Leydig cells and Sertoli cells. In purified Leydig cells from 90 day-old rats the P450arom mRNA level was: 36.2±3.4×10?3 amoles/μg RNA whereas in Sertoli cells the mRNA level was 10 fold lower. In pachytene spermatocytes, round spermatids and testicular spermatozoa the P450arom mRNA levels were re pectively 367.2±76.6, 117.6±22.0 and <1×10?3 amole/μg RNA. In conclusion we have demonstrated that the P450 aromatase is present not only in Sertoli cells and Leydig cells from mature rat testis but a biologically active aromatase exists also in germ cells (pachytene spermatocytes, round spermatids and spermatozoa). The existence of an additional source of estrogens within the genital tract of the male is now well documented and that suggests a putative role for these hormones during the male germ cell development.  相似文献   

7.
The specific activity of 2,3-dehydrodolichyl diphosphate synthase in homogenates of protease-treated seminiferous tubules, enriched spermatogenic cells, and Sertoli cells changed as a function of the age of prepuberal rats. The highest enzymatic activity occurred in each case in 23-day-old rats. Homogenates of pachytene spermatocytes, spermatids, or Sertoli cells had higher synthase activity than a whole testicular homogenate prepared by protease treatment of tubules. Enzymatic activity in pachytene spermatocytes expressed per mg of protein was about 1.7-fold higher than in spermatids, 5.3-fold higher than in spermatogonia, and about 8.3-fold higher than in spermatozoa. Therefore, the increase in spermatogenic cell synthase before day 23 can be accounted for by the appearance of the pachytene spermatocytes. Enzymatic activity decreased remarkably after the differentiation of spermatids into spermatozoa. Synthase activity in enriched Sertoli cell preparations was 1.5-2.3-fold higher than in spermatogenic cell preparations between days 15 and 30. Therefore, both spermatogenic cells and Sertoli cells contribute to changes in the enzymatic activity in seminiferous tubules during development. These changes may be important in regulating the availability of dolichyl phosphate for glycoprotein synthesis during early stages of differentiation.  相似文献   

8.
Effects of highly purified antiserum (AS) to follicle stimulating hormone (FSH) on testicular function was studied in immature rats. Treatment with FSHAS for 10 days, from 25-34, decreased weights of the testis (p .001) and increased weights of the epididymis (p .05). Numbers of the cell types in the seminiferous epithelium, particularly Type A spermatogonia pachytene spermatocytes and spermatids, were markedly reduced, possibly due to: 1) decreased division of the initial stem cells, 2) impairment of division of Type B spermatogonia and their transformation to pachytene spermatocytes, and 3) desquamation and degeneration of pachytene spermatocytes and spermatids. FSHAS also affected the sertoli cell function which was reflected in the decreased binding of androgens to supernatant fraction of the testis and epididymides. Treatment with luteinizing hormone-AS for 5 days did not affect testicular function but the binding of androgens to the supernatants of the caput and cauda epididymides and ventral prostate was significantly reduced (p .001). These data indicate that FSH is necessary for the maintenance of the cellular integrity of the seminiferous epithelium during the completion of the 1st wave of spermatogenesis.  相似文献   

9.
Spermatozoa released from the seminiferous tubules are terminally differentiated cells with no known synthetic activity. Their components are synthesized in the spermatogenic cells during spermatogenesis. In this study, we report the characterization and immunolocalization of beta-glucuronidase in mouse testicular germ cells and spermatozoa. The enzyme is an exoglycohydrolase with dual localization, being present in lysosomes and endoplasmic reticulum of several mouse and rat tissues. The purified germ cell preparations (spermatocytes, round spermatids, and condensed/elongated spermatids) when assayed for beta-glucuronidase activity showed that the spermatocytes contained five times more enzyme activity per cell than the spermatids. Polyacrylamide gel electrophoresis, carried out under native and denaturing conditions, demonstrated that the germ cells express only the lysosomal form of the enzyme (pI 5.5-6.0) with a subunit molecular mass of 74 kDa. Immunocytochemical studies revealed a positive reaction in the Golgi membranes, Golgi-associated vesicles, and lysosomes of late spermatocytes (pachytene spermatocytes) and a stage-specific localization during spermiogenesis. The forming or formed acrosome of the elongated spermatids (stages 9-16) and epididymal spermatozoa was highly immunopositive. Comparison of immunoprecipitation curves and kinetic properties of the enzyme present in spermatocytes and spermatozoa revealed no major differences. Taken together, our results demonstrate that beta-glucuronidase activities present in the lysosomes of spermatocytes and the sperm acrosome are kinetically and immunologically similar.  相似文献   

10.
Following intratesticular injection of [35S]methionine, the multiple isoforms of actin and tubulin from highly purified mouse testicular meiotic and post-meiotic cells have been analysed by high resolution two-dimensional gel electrophoresis. In pachytene spermatocytes both beta and gamma actin are synthesized, gamma actin being made in a significantly greater amount. The relative proportion of synthesis of beta and gamma actin changes during spermiogenesis, beta actin increasing and gamma actin decreasing in round spermatids, elongating spermatids, and residual bodies. Both alpha and beta tubulin are synthesized in approximately equal proportion in pachytene spermatocytes. In addition to the tubulin isoforms synthesized during meiosis, at least one new form of both alpha and beta tubulin first appears in post-meiotic (haploid) cells. In elongating spermatids and residual bodies, the synthesis of alpha tubulin is drastically reduced.  相似文献   

11.
Three spermatogenic cell populations isolated from prepuberal mice--type B spermatogonia, preleptotene spermatocytes, and leptotene/zygotene spermatocytes--were used to elicit distinct polyclonal antisera. Surface binding specificities were determined for purified IgGs by indirect immunofluorescence and rosette assays on live cells. Binding activities were assayed both before and after absorptions with a variety of somatic and spermatogenic cells. Each of these antisera binds to surface antigens that are present on germ cells throughout spermatogenesis and are not shared by splenocytes, thymocytes, and erythrocytes. Only the antiserum raised against leptotene and zygotene spermatocytes (ALZ) recognizes a stage-specific subset of surface determinants. After appropriate absorptions, ALZ binds to the surface of early pachytene spermatocytes and germ cells at subsequent stages of differentiation, including vas deferens spermatozoa. Antigens which react with this absorbed IgG are not detected on the surface of spermatogonia or meiotic cells prior to pachynema, including leptotene and zygotene spermatocytes. The observed binding specificities may result from the synthesis of one or more surface molecules during the early meiotic stages, followed by delayed insertion into the plasma membrane during the pachytene stage of meiotic prophase. Stage-specific antigens recognized by ALZ, including both protein and probably lipid, have been localized immunochemically on nitrocellulose blots from one-dimensional SDS gels. A dithiothreitol-sensitive constituent (Mr approximately 39,000) recognized by ALZ has been identified as the major protein determinant present in early meiotic cells but absent in 8-day-old seminiferous cell suspensions containing spermatogonia and Sertoli cells. This determinant is present in populations of preleptotene, leptotene/zygotene, and early pachytene spermatocytes isolated from 17-day-old animals, an observation consistent with the hypothesis of delayed insertion into the plasma membrane.  相似文献   

12.
The presence and biosynthesis of the testis-specific isozyme of lactate dehydrogenase (LDH-X) in cells at various stages of spermatogenesis have been examined. Enrichment of testicular cells in various stages of spermatogenesis has been achieved by two methods: (1) cell separation by velocity sedimentation in the Elutriator rotor and (2) γ irradiation of testes to eliminate specific classes of testicular cells. Separation of cells from immature mice indicated that cells prior to the midpachytene stage contain no LDH-X. Measurement of LDH-X levels in cells separated from adult mice and in testicular homogenates prepared at various times after irradiation indicated that the highest level of LDH-X per cell (normalized for DNA content) was in spermatids. Synthesis of LDH-X was determined, after in vivo injection of [3H]valine, by measurement of the radioactivity in LDH-X precipitated with specific antiserum. After irradiation, the rate of LDH-X synthesis remained constant, despite the loss of early primary spermatocytes. In separated cells, the rate of LDH-X synthesis was highest in late pachytene spermatocytes, lower in round spermatids, and even lower, but still significant, in elongated spermatids. Therefore, the synthesis of LDH-X begins at a specific point during spermatogenesis, the midpachytene stage of spermatocyte development, and continues throughout spermatid differentiation.  相似文献   

13.
14.
The temporal expression of cell surface antigens during mammalian spermatogenesis has been investigated using isolated populations of mouse germ cells. Spermatogenic cells at advanced stages of differentiation, including pachytene primary spermatocytes, round spermatids, and residual bodies of Regaud and mature spermatozoa, contain common antigenic membrane components which are not detected before the pachytene stage of the first meiotic prophase. These surface constituents are not detected on isolated populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, or leptotene and zygotene primary spermatocytes. These results have been demonstrated by immunofluorescence microscopy, by complement-mediated cytotoxicity, and by quantitative measurements of immunoglobulin (Ig) receptors on the plasma membrane of all cell populations examined. The cell surface antigens detected on germ cells are not found on mouse thymocytes, erythrocytes, or peripheral blood lymphocytes as determined by immunofluorescence and by cytotoxicity assays. Furthermore, absorption of antisera with kidney and liver tissue does not reduce the reactivity of the antibody preparations with spermatogenic cells, indicating that these antigenic determinants are specific to germ cells. This represents the first direct evidence for the ordered temporal appearance of plasma membrane antigens specific to particular classes of mouse spermatogenic cells. It appears that at late meiotic prophase, coincident with the production of pachytene primary spermatocytes, a variety of new components are inserted into the surface membranes of developing germ cells. The further identification and biochemical characterization of these constituents should facilitate an understanding of mammalian spermatogenesis at the molecular level.  相似文献   

15.
The objective of this study was to determine the cellular and subcellular distribution of small nuclear ribonucleoprotein particles (snRNPs) in the adult rat testis in relation to the different cell types at the various stages of the cycle of the seminiferous epithelium. The distribution of snRNPs in the nucleus and cytoplasm of germ cells was quantitated in an attempt to correlate RNA processing with morphological and functional changes occurring during the development of these cells. Light-microscopic immunoperoxidase staining of rat testes with polyclonal anti-Sm and monoclonal anti-Y12 antibodies localized spliceosome snRNPs in the nuclei and cytoplasm of germ cells up to step 10 spermatids. Nuclear staining was intense in Sertoli cells, spermatogonia, spermatocytes, and in the early steps of round spermatid development. Although comparatively weaker, cytoplasmic staining for snRNPs was strongest in mid and late pachytene spermatocytes and early round spermatids. Quantitative electron-microscopic immunogold labeling of Lowicryl embedded testicular sections confirmed the light-microscopic observations but additionally showed that the snRNP content peaked in the cytoplasm of midpachytene spermatocytes and in the nuclei of late pachytene spermatocytes. The immunogold label tended to aggregate into distinct loci over the nuclear chromatin. The chromatoid body of spermatids and spermatocytes and the finely granular material in the interstices of mitochondrial aggregates of spermatocytes were found to be additional sites of snRNP localization and were intensely labeled. This colocalization suggests that these dense cytoplasmic structures may be functionally related. Anti-U1 snRNP antibodies applied to frozen sections showed the same LM localization pattern as spliceosome snRNPs. Anti-U3 snRNP antibodies applied to frozen sections stained nucleoli of germ cells where pre-rRNA is spliced.  相似文献   

16.
Isolated pachytene spermatocytes liver longer than round spermatids in vitro. Indigenous formation of oxygen-derived free radicals and hydrogen peroxide can cause damage to germ cells. The germ cell antioxidant capacity may play an important role in this respect. In view of this, we have examined the activity and cellular localization of superoxide dismutase (SOD) and glutathione S-transferases (GST) in rat testicular cells. We have found significant differences in the distribution of these enzymatic activities in the germ cells. In addition, this study shows that alpha-tocopherol is found in various amounts in rat testicular cells in the order of: Sertoli cells greater than pachytene spermatocytes greater than round spermatids, with a factor of 4 in the alpha-tocopherol content between Sertoli cells and round spermatids.  相似文献   

17.
18.
Cell surface polypeptides of mouse pachytene spermatocytes and round spermatids (steps 1–8) have been iodinated using 1,2,3,6,tetracholoro-3α, 6α-diphenylglycouril (IODOGEN). Labeled proteins have been assayed using two-dimensional polyacrylamide electrophoresis and radioautography. Purified plasma membranes, prepared from both spermatocytes and spermatids after the iodination of intact cells, exhibit 25–30 polypeptides which label reproducibly. No significant qualitative differences are noted in the labeled polypeptide map obtained from each of the purified cell types. Iodinated proteins range in molecular weight from greater than 100k daltons to approximately 40k daltons. The isoelectric points of labeled constituents range from pI 5.7 to 7.2. Three polypeptides represent the major iodinated species: p 94/5.8, p 75/5.9, and p 53/7.1. Comparison with total plasma membrane constituents assayed using Coomassie brilliant blue indicates that many of the radioactively labeled proteins are not present in quantities sufficient to allow ready detection without isotopic techniques. As a result, many of the proteins identified autoradiographically represent newly described surface components of mouse pachytene spermatocytes and round spermatids. The preparation of purified plasma membrane fractions prior to electrophoresis ensures that all iodinated species are in fact cell surface components. Furthermore, experiments designed to assess the vectorial nature of the IODOGEN-catalyzed labeling procedure suggest that most, if not all, of the iodinated species are exposed on the external side of the cell plasma membrane. Therefore, these studies have (1) identified hitherto unrecognized plasma membrane components of mouse pachytene spermatocytes and round spermatids and (2) provided the first available biochemical data concerning the molecular orientation of particular proteins in the surface membranes of developing mouse spermatogenic cells.  相似文献   

19.
Biochemical and antigenic similarities exist among members of what can be considered a family of low molecular weight rabbit sperm autoantigens. These autoantigens are intrinsic plasma membrane glycoproteins specific to spermatogenic cells and spermatozoa. The amino acid and carbohydrate compositions of rabbit sperm autoantigen-1 (RSA-1) and RSA-2 were compared and monoclonal antibodies (mAb) were raised in mice against rabbit sperm autoantigens. The epitopes recognized by the antibodies were present on RSA-1, 2 and 3. A monoclonal anti-RSA-1, 2 and 3 (designated A.F. 1) was used to localize the antigen on spermatozoa and testis cells and investigate the epitope's tissue specificity. This mAb inhibited in vitro fertilization but did not block the sperm from dispersing the cumulus cells surrounding the egg. The mAb also demonstrated the presence of RSA-1, 2 and 3 on the plasma membrane of the egg after fertilization. It is concluded that the RSA family plays a central role in zona penetration.  相似文献   

20.
A monoclonal antibody (13D3) has been developed that recognizes a 71 kilodalton (71 kDa) protein on two-dimensional immunoblots of proteins extracted from a mixture of mouse spermatogenic cells (mainly pachytene spermatocytes and spermatids). This protein was shown by immunoblotting and adenosine triphosphate (ATP)-binding characteristics to be identical to a 71 kDa mouse heat-shock cognate (hsc) protein, hsc71, present in 3T3 cells. Along with a 70 kDa heat-shock inducible protein (hsp70), and a 74 kDa heat-shock cognate protein (hsc74), hsc71 is a product of the mouse HSP70 multigene family. Although antibody 13D3 reacted strongly with hsc71, it reacted only faintly with hsp70 in 3T3 cells, and not at all with hsc74 or a germ cell-specific hsp70-like protein (P70) on immunoblots of mixed germ cells. Antibody 13D3 is unique among known antibodies in its pattern of reaction with these heat-shock proteins. In immunofluorescence studies on isolated germ cells, 13D3 reacted uniformly with the cytoplasm of pachytene spermatocytes, round spermatids, and residual bodies, but only with the midpiece of spermatozoa. Antibody 13D3 recognizes other proteins in addition to hsc71 on two-dimensional immunoblots of condensing spermatids and spermatozoa. Two of the proteins (70 kDa/pI 6.4 and 70 kDa/pI 6.5) were present in condensing spermatids and spermatozoa, and another protein (69 kDa/pI 7.0) was detected only in spermatozoa. The new proteins also were recognized by monoclonal antibody 7.10, which reacts specifically with hsp70, hsc71, hsc74, and P70. Although [35S]methionine was incorporated into the new proteins in condensing spermatids, hsc71, hsc74, and P70 were not labeled. These results suggest that unique heat-shock proteins are synthesized late in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号