首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Regulation of growth cone actin dynamics by ADF/cofilin.   总被引:9,自引:0,他引:9  
Nervous system development is reliant on neuronal pathfinding, the process in which axons are guided to their target cells by specific extracellular cues. The ability of neurons to extend over long distances in response to environmental guidance signals is made possible by the growth cone, a highly motile structure found at the end of neuronal processes. Growth cones detect directional cues and respond with either attractive or repulsive movements. The motility of growth cones is dependent on rapid reorganization of the actin cytoskeleton, presumably mediated by actin-associated proteins under the control of incoming guidance signals. This article reviews how one such family of proteins, the ADF/cofilins, are emerging as key regulators of growth cone actin dynamics. These proteins are essential for rapid actin turnover in a variety of different cell types. ADF/cofilins are heavily co-localized with actin in growth cones and are necessary for neurite outgrowth. ADF/cofilin activities are regulated through reversible phosphorylation by LIM kinases and slingshot phosphatases. LIM kinases are downstream effectors of the Rho GTPases Rho, Rac, and Cdc42. Growing evidence suggests that extracellular guidance cues may locally alter actin dynamics by regulating the activity of LIM kinase and ADF/cofilin phosphatases via the Rho GTPases. In this way, ADF/cofilins and their upstream effectors may be pivotal to our understanding of how guidance information is translated into physical alterations of the growth cone actin cytoskeleton.  相似文献   

2.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

3.
The Rho family of small GTPases act as intracellular molecular switches that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. Recent evidence implicates Rho GTPases in the regulation of neuronal morphogenesis, including migration, polarity, axon growth and guidance, dendrite elaboration and plasticity, and synapse formation. Signalling pathways from membrane receptors to Rho GTPases and from Rho GTPases to the actin cytoskeleton are beginning to be discovered. Mutations in these signalling pathways have been reported in human neurological diseases, which underscores their importance in the development and function of the nervous system.  相似文献   

4.
Growth cone motility and navigation in response to extracellular signals are regulated by actin dynamics. To better understand actin involvement in these processes we determined how and in what form actin reaches growth cones, and once there, how actin assembly is regulated. A continuous supply of actin is maintained at the axon tip by slow transport, the mobile component consisting of an unassembled form of actin. Actin is co-transported with actin-binding proteins, including ADF and cofilin, structurally related proteins essential for rapid turnover of actin filaments in vivo. ADF and cofilin activity is regulated through phosphorylation by LIM kinases, downstream effectors of the Rho family of GTPases, Cdc42, Rac and Rho. Attractive and repulsive extracellular guidance cues might locally alter actin dynamics by binding specific GTPase-linked receptors, activating LIM kinases, and subsequently modulating the activity of ADF/cofilin. ADF is enriched in growth cones and is required for neurite outgrowth. In addition, signals that influence growth cone behavior alter ADF/cofilin phosphorylation, and overexpression of ADF enhances neurite outgrowth. Growth promoting effects of laminin are mimicked by expression of constitutively active Cdc42 and blocked by expression of the dominant negative Cdc42. Repulsive effects of myelin and sema3D on growth cones are blocked by expression of constitutively active Rac1 and dominant negative Rac1, respectively. Thus a series of complex pathways must exist for regulating effectors of actin dynamics. The bifurcating nature of the ADF/cofilin phosphorylation pathway may provide the integration necessary for this complex regulation.  相似文献   

5.
Semaphorin-mediated axonal guidance via Rho-related G proteins.   总被引:11,自引:0,他引:11  
For many growing axons, interaction with an extracelluar Semaphorin signal leads to growth cone collapse and axon repulsion. Semaphorin receptors composed of Neuropilins and Plexins transduce extracellular cues into changes in the growth cone actin cytoskeleton. The data implicating Rho family G proteins in Semaphorin signaling and in other axon guidance events are considered here. Recent work makes it clear that Rac1 is required for this process. In particular, there is intriguing new evidence that the Plexin receptors communicate directly with members of the Rho family GTPases, although uncertainties remain concerning how Plexins alter Rac1 function. The CRMP (collapsin response mediator protein) family is also required for Plexin-based Semaphorin signaling, and new data demonstrate direct links to Rho and Rac1-based signaling.  相似文献   

6.
It is becoming increasingly evident that proteins of the actin depolymerizing factor (ADF)/cofilin family are essential regulators of actin turnover required for many actin-based cellular processes, including motility. ADF can increase actin turnover by either increasing the rate of actin filament treadmilling or by severing actin filaments. In neurons ADF is highly expressed in neuronal growth cones and its activity is regulated by many signals that affect growth cone motility. In addition, increased activity of ADF causes an increase in neurite extension. ADF activity is inhibited upon phosphorylation by LIM kinases (LIMK), kinases activated by members of the Rho family of small GTPases. ADF become dephosphorylated downstream of signal pathways that activate PI-3 kinase or increase levels of intracellular calcium. The growth-regulating effects of ADF together with its ability to be regulated by a wide variety of guidance cues, suggest that ADF may regulate growth cone advance and navigation.  相似文献   

7.
Plexins constitute a large family of transmembrane proteins that act as receptors for the semaphorin family of ligands. They are best known for their role in growth cone guidance, although they also are widely expressed outside the nervous system. Plexins are thought to control axon guidance by modifying the growth cone cytoskeleton, and Rho GTPases have been strongly implicated in this response. However, the exact contribution of Rho proteins is unclear. Sema3A/Plexin-A1-induced growth cone collapse, for example, requires Rac activity, which is a surprising result given that this GTPase is usually associated with membrane protrusions. We show here that Sema3A-induced collapse of COS-7 cells expressing Plexin-A1 also requires Rac but not Rho activity and that the cytoplasmic tail of Plexin-A1 interacts directly with activated Rac. However, collapse induced by a constitutively activated version of Plexin-A1 does not require Rac. We propose a novel function for Rac, namely that it acts upstream of Plexin-A1 during semaphoring-induced collapse, to regulate the activity of the receptor.  相似文献   

8.
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.  相似文献   

9.
Ephs regulate growth cone repulsion, a process controlled by the actin cytoskeleton. The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4 and has been suggested to mediate the effect of EphA on the activity of Rho GTPases, key regulators of the cytoskeleton and axon guidance. Using cultured ephexin1-/- mouse neurons and RNA interference in the chick, we report that ephexin1 is required for normal axon outgrowth and ephrin-dependent axon repulsion. Ephexin1 becomes tyrosine phosphorylated in response to EphA signaling in neurons, and this phosphorylation event is required for growth cone collapse. Tyrosine phosphorylation of ephexin1 enhances ephexin1's GEF activity toward RhoA while not altering its activity toward Rac1 or Cdc42, thus changing the balance of GTPase activities. These findings reveal that ephexin1 plays a role in axon guidance and is regulated by a switch mechanism that is specifically tailored to control Eph-mediated growth cone collapse.  相似文献   

10.
Axon guidance: receptor complexes and signaling mechanisms   总被引:5,自引:0,他引:5  
The generation of a functional neuronal network requires that axons navigate precisely to their appropriate targets. Molecules that specify guidance decisions have been identified, and the signaling events that occur downstream of guidance receptors are beginning to be understood. New research shows that guidance receptor signaling can be hierarchical -- one receptor silencing the other -- thereby allowing navigating growth cones to interpret opposing guidance cues. Among the known intracellular signaling molecules shared by all guidance receptor families, Rho GTPases appear to be primary regulators of actin dynamics and growth cone guidance. Novel effector molecules complete the picture and suggest additional signaling mechanisms.  相似文献   

11.
Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase through its binding to N-Shc and CrkL/Crk, adapter molecules downstream of activated receptor tyrosine kinases. Overexpression of the TrkA-binding region of Grit inhibited NGF-induced neurite elongation. Further, we found some tendency for neurite promotion in full-length Grit-overexpressing PC12 cells upon NGF stimulation. These results suggest that Grit, a novel TrkA-interacting protein, regulates neurite outgrowth by modulating the Rho family of small GTPases.  相似文献   

12.
13.
Rho family GTPases have been implicated in neuronal growth cone guidance; however, the underlying cytoskeletal mechanisms are unclear. We have used multimode fluorescent speckle microscopy (FSM) to directly address this problem. We report that actin arcs that form in the transition zone are incorporated into central actin bundles in the C domain. These actin structures are Rho/Rho Kinase (ROCK) effectors. Specifically, LPA mediates growth cone retraction by ROCK-dependent increases in actin arc and central actin bundle contractility and stability. In addition, these treatments had marked effects on MT organization as a consequence of strong MT-actin arc interactions. In contrast, LPA or constitutively active Rho had no effect on P domain retrograde actin flow or filopodium bundle number. This study reveals a novel mechanism for domain-specific spatial control of actin-based motility in the growth cone with implications for understanding chemorepellant growth cone responses and nerve regeneration.  相似文献   

14.
Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined. Activity and subcellular localization of the Rho GTPases are regulated by post-translational modification. The addition of a geranylgeranyl group to the carboxy (C-) terminus targets Rho GTPases to the plasma membrane and promotes their activation by facilitating interaction with guanine nucleotide exchange factors and allowing sequestering by association with guanine dissociation inhibitors. However, it is unclear how these modifications affect neurite extension or how subcellular localization alters signaling from the classical Rho GTPases (RhoA, Rac1, and Cdc42). Here, we review recent data addressing this issue and propose that Rho GTPase geranylgeranylation regulates outgrowth.  相似文献   

15.
Rho family GTPases have important roles in mediating the effects of guidance cues and growth factors on the motility of neuronal growth cones. We previously showed that the neurotrophin BDNF regulates filopodial dynamics on growth cones of retinal ganglion cell axons through activation of the actin regulatory proteins ADF and cofilin by inhibiting a RhoA-dependent pathway that phosphorylates (inactivates) ADF/cofilin. The GTPase Cdc42 has also been implicated in mediating the effects of positive guidance cues. In this article we investigated whether Cdc42 is involved in the effects of BDNF on filopodial dynamics. BDNF treatment increases Cdc42 activity in retinal neurons, and neuronal incorporation of constitutively active Cdc42 mimics the increases in filopodial number and length. Furthermore, constitutively active and dominant negative Cdc42 decreased and increased, respectively, the activity of RhoA in retinal growth cones, indicating crosstalk between these GTPases in retinal growth cones. Constitutively active Cdc42 mimicked the activation of ADF/cofilin that resulted from BDNF treatment, while dominant negative Cdc42 blocked the effects of BDNF on filopodia and ADF/cofilin. The inability of dominant negative Cdc42 to block ADF/cofilin activation and stimulation of filopodial dynamics by the ROCK inhibitor Y-27632 indicate interaction between Cdc42 and RhoA occurs upstream of ROCK. Our results demonstrate crosstalk occurs between GTPases in mediating the effects of BDNF on growth cone motility, and Cdc42 activity can promote actin dynamics via activation of ADF/cofilin.  相似文献   

16.
In the developing nervous system, nerve cells and axons respond to various attractive and repulsive guidance cues while traveling to their final destination. Netrins are bifunctional guidance cues that attract several classes of axons but repel others. The response of an axon to netrins is dictated by the composition of netrin receptors on the cell surface and the internal state of the growth cone. Recent analyses have identified several signal transduction pathways that contribute to netrin-mediated guidance. A model emerges in which tyrosine phosphorylation, phosphatidylinositol signaling and regulation by Rho GTPases act in concert to trigger extension of axons and turning of growth cones in response to Netrin1.  相似文献   

17.
Eph receptors transduce short-range repulsive signals for axon guidance by modulating actin dynamics within growth cones. We report the cloning and characterization of ephexin, a novel Eph receptor-interacting protein that is a member of the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho GTPases. Ephrin-A stimulation of EphA receptors modulates the activity of ephexin leading to RhoA activation, Cdc42 and Rac1 inhibition, and cell morphology changes. In addition, expression of a mutant form of ephexin in primary neurons interferes with ephrin-A-induced growth cone collapse. The association of ephexin with Eph receptors constitutes a molecular link between Eph receptors and the actin cytoskeleton and provides a novel mechanism for achieving highly localized regulation of growth cone motility.  相似文献   

18.
Bacterial cytotoxins: targeting eukaryotic switches   总被引:9,自引:0,他引:9  
Many bacterial cytotoxins act on eukaryotic cells by targeting the regulators that are involved in controlling the cytoskeleton or by directly modifying actin, with members of the Rho GTPase family being particularly important targets. The actin cytoskeleton, and especially the GTPase 'molecular switches' that are involved in its control, have crucial functions in innate and adaptive immunity, and have pivotal roles in the biology of infection. In this review, we briefly discuss the role of the actin cytoskeleton and the Rho GTPases in host-pathogen interactions, and review the mode of actions of bacterial protein toxins that target these components.  相似文献   

19.
To systematically understand the molecular events that underlie biological phenomena, we must develop methods to integrate an enormous amount of genomic and proteomic data. The integration of molecular data should go beyond the construction of biochemical cascades among molecules to include tying the biochemical phenomena to physical events. For the behavior and guidance of growth cones, it remains largely unclear how biochemical events in the cytoplasm are linked to the morphological changes of the growth cone. We take a computational approach to simulate the biochemical signaling cascade involving members of the Rho family of GTPases and examine their potential roles in growth-cone motility and axon guidance. Based on the interactions between Cdc42, Rac, and RhoA, we show that the activation of a Cdc42-specific GEF resulted in switching responses between oscillatory and convergent activities for all three GTPases. We propose that the switching responses of these GTPases are the molecular basis for the decision mechanism that determines the direction of the growth-cone expansion, providing a spatiotemporal integration mechanism that allows the growth cone to detect small gradients of external guidance cues. These results suggest a potential role for the cross talk between Rho GTPases in governing growth-cone movement and axon guidance and underscore the link between chemodynamic reactions and cellular behaviors.  相似文献   

20.
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号