首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The fungusZoophthora radicans (Zygomycetes: Entomophthorales) requires external Ca2+ for appressorium formation but not for conidial germination. The number of appressoria formed depends on the Ca2+ concentration of the medium. At low [Ca2+] (100 pM) nuclear division and germ tube growth are significantly reduced compared to higher Ca2+ concentrations (10 and 1,000 M). By contrast, neither external K+ nor external Cl is needed for germination or appressorium formation. Treatment of conidia with a Ca2+-antagonist, Nd3+, and a Ca2+-channel blocker, nifedipine, inhibits appressorium formation, showing that a Ca2+ influx is required for appressorium formation. Furthermore, the partial yet saturating inhibition by nifedipine and complete inhibition by Nd3+ indicates that at least two kinds of Ca2+ channels are involved in appressorium formation. A contribution of intracellular Ca2+ to the signal transduction chain for the formation of appressoria is demonstrated by the inhibitory effect of the intracellular Ca2+ antagonist TMB-8. The calmodulin antagonists R24571, TFP, W-7, and W-5 inhibit appressorium formation at concentrations which have no effect on germination. The data presented in this paper are consistent with the hypothesis that a Ca2+/calmodulin system is involved in regulating appressorium formation. However, since the direct effects of the drugs were not specifically tested on their proposed binding sites, we leave room for alternative hypotheses that have yet to be formulated.Abbreviations A-9-C 9-anthracenecarboxylic acid - DAPI 4,6 diamino-2-phenylindole - EGTA ethylene glycol bis(-aminoethylether)-N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - H-7 N-(2-methylamino)ethyl-5-isoquino-linesulphonamide dihydrochloride - IC50 concentration of inhibitor that causes 50% inhibiton - R24571 (calmidazolium) 1-[bis-(4-chlorophenyl)methyl]-3-[2,4-dichloro--(2,4-dichlorobenzyloxy)phenethyl]-imidazolium chloride - TEA tetraethylammonium - TFP (trifluoperazine) 10-[3-(4-methylpiperazine-1-yl)-propyl]-2-trifluomethylphenothiazine - TMB-8 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride - W-5 N-(6-aminohexyl)-1-naphthalene-sulfonamide - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide  相似文献   

2.
Summary A fungal elicitor extracted fromAspergillus oryzae (Ahlb.) Cobn mycelia promoted the production of shikonin derivatives inOnosma paniculatum Bur et Franch cell suspension cultures. Elicitor treatment also increased Ca2+ concentration in RM9 medium, which could be measured earlier than the elicited increase of shikonin formation. Several reagents known to induce Ca2+-influx and increase the intracellular-free Ca2+ level, such as the addition of Ca (NO3)2·4H2O, the Ca2+ ionophore A23187, and abscisic acid (ABA), appreciably suppressed the elicitor-promoted shikonin formation inOnosma cells. In contrast, the decrease of intracellular-free Ca2+ level by the specific Ca2+-chelator ethylene glycol bis (β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) or the Ca2+—channel blocker, verapamil, enhanced the biosynthesis of shikonin even in the absence of elicitor. Treatment of cells with trifluoperazine (TFP) also stimulated shikonin formation inOnosma cell cultures. A rapid and transient drop of free Ca2+ level in one protoplast was directly determined after the addition of elicitor toOnosma cell cultures. The inhibitory effect on shikonin formation by ABA was largely on account of its ability to restore the intracellular Ca2+ level lowered by the elicitor. These results suggest that Ca2+ play a significant role in an early stage of the elicitation process ofOnosma cells. The rapid drop of cytoplasmic Ca2+ carries the elicitor signal and in turn regulates the biosynthesis of shikonin derivatives.  相似文献   

3.
Summary We have investigated the possibility that the rapid low temperature effects upon cyclosis and subcelluar structure might be due to a breakdown in compartmentation of intracellular calcium, leading to an increase in cytoplasmic Ca2+. Changes in fluorescence of chlortetracycline (CTC), a probe for membrane-bound Ca2+ were monitored in the corners of individual trichome cells (effective spot size ca. 800 square microns) with the aid of a Zeiss epifluorescence microscope linked to a Zeiss Zonax analyzing system. A consistent decrease in signal was observed as cells of chilling-sensitiveLycopersicon esculentum Mill. (cv.Ace) were cooled below their threshold temperature for chilling sensitivity. On rewarming, as the temperature rose above the chilling threshold, there was an increase in fluorescent signal. In contrast, trichomes ofDigitalis purpurea (chilling-resistant) showed no such changes. The uncoupling agent, CCCP, and the Ca2+-chelator, EGTA, induced marked decreases in the fluorescent signal in cells from both species. A more direct approach to testing the hypothesis was to examine the effect of modulating cytoplasmic Ca2+ with the aid of the Ca2+ -ionophore A 23187 and a Ca2+ concentration series in EGTA buffer. Above 10–8 M external free Ca2+, streaming began to be inhibited, full inhibition occurring at 5 x 10–6M Ca2+. The strand structure started to disappear when the Ca2+ rose above 10–7M. Disappearance of strands was accompanied by an increase in the number of cells with vesiculated cytoplasm, an effect analogous to that of chilling temperatures on these cells. The phenothiazines, trifluoperazine and chlorpromazine (10–5M) had similar effects. However but such effects were not seen with R 24571 or N(6-aminohexyl)5-chloro-1-napthalenesulfonamide (W 7) until concentrations were reached that orders of magnitude above their IC50 for calmodulin.  相似文献   

4.
Ilse Foissner 《Protoplasma》1990,154(2-3):80-90
Summary The formation of wall appositions (plugs) by ionophore A 23187, CaCl2, LaCl3, and nifedipine was studied in mature internodal cells of characeaen algae. CaCl2 at concentrations above 10–2M induces thick fibrillar plugs without callose inNitella flexilis. InChara corallina andNitella flexilis ionophore A 23187 (1.25×10–5 to 5×10–5M) and LaCl3 (7.5×10–5 to 2.5×10–4M) cause flat appositions which contain callose and have a more granular structure. Plug formation by ionophore A 23187, CaCl2, and LaCl3 is pH-dependent and occurs beneath the alkaline regions of the cell. Nifedipine (10–4 to 10–5M) induces plugs inNitella flexilis after previous injury. These callose-containing wall appositions consist of a heterogeneous granular core which is covered by a fibrillar layer. The results of this work are compared with previous studies on wound wall formation and chlortetracycline (CTC)-induced plug formation which reveal that abundant coated vesicles occur only when a thick fibrillar wall layer is formed. Neither LaCl3 nor nifedipine inhibit the formation of CaCl2- or CTC-plugs. The unusual effects of these substances, which normally act as Ca2+ antagonists and therefore should prevent and not induce plug formation, are discussed. It is suggested that La3+ mimicks the effects of calcium and that nifedipine binding to the Ca2+ channels is altered in the alkaline regions of characean internodes and allows an influx of Ca2+.Abbreviations AFW artificial fresh water - CTC chlortetracycline - DCMU dichlorphenyldimethylurea - DMSO dimethylsulfoxide - EGTA ethyleneglycoltetraacetic acid - MES 2-(N-morpholino) ethanesulfonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - TAPS N-tris[hydroxymethyl]methyl-3-aminopropanesulfonic acid  相似文献   

5.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

6.
Guanosine 3′,5′-monophosphate (cGMP) is an intracellular messenger in various kinds of cell. We investigated the regulation of cGMP production by nitric oxide (NO) in rabbit submandibular gland cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose- and time-dependent manner, but the α-agonist phenylephrine, substance P and the β-agonist isoproterenol failed to evoke cGMP production. In fura-2-loaded cells, methacholine induced an increase in intracellular Ca2+ ([Ca2+]i) in a concentration-dependent manner, which was similar to that for cGMP production. When the external Ca2+ was chelated with EGTA, methacholine failed to induce cGMP production. Ca2+ ionophore A23187 and thapsigargin, which induce the increase in [Ca2+]i without activation of Ca2+-mobilizing receptors, mimicked the effect of methacholine. cGMP production induced by methacholine, A23187 and thapsigargin was clearly inhibited by NG-nitro- -arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS). S-Nitroso-N-acetyl- -penicillamine (SNAP), a NO donor, induced cGMP formation. In the lysate of rabbit submandibular gland cells, Ca2+-regulated nitric oxide synthase activity was detected. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is regulated by NO generation via the increase in [Ca2+]i.  相似文献   

7.
The effects of the calcium inonophore A 23187 on growing pollen tubes of Lilium longiflorum Thunb. cv. Ace were investigated with the light and electron microscope. Tip growth is slowed down and stopped within 20 min after application of 5x10-5 M ionophore A 23187. The main effects are the disappearance of the clear zone at the pollen tube tip and a thickening of the cell wall at the tip and at the pollen tube flanks. This effect on cell wall formation is confirmed under the electron microscope: The vesicular zone in treated pollen tubes is reduced, numerous vesicular contents are irregularly integrated in the pollen tube wall not only in the tip, but over a long distance of the pollen tube wall. In addition, effects on mitochondria and dictyosomes are observed. These results are interpreted as a disorientation of the Ca2+-based orientation mechanism of exocytosis after equilibration of the Ca2+-gradient  相似文献   

8.
The role of the calcium messenger system in the regulation of ion absorption across the teleost intestine was studied using pharmacological intervention. Radiochloride transport was independent of external Ca2+ over the range 10 microM to 2.5 mM. Treatment with the Ca2+ ionophore A23187 (to hyperpolarization of the apical membrane potential of intestinal epithelial cells. The Ca2+-calmodulin antagonists trifluoperazine (TFP) and calmidazolium (R24571) produced opposite effects, i.e., stimulation of Cl- absorption and cellular depolarization. Treatment with TFP or R24571 will block or override the inhibitory action of A23187. These data suggest a regulatory role for Ca2+ in the control of intestinal NaCl absorption and mediation via calmodulin.  相似文献   

9.
Interactions between the divalent cation ionophore, A23187, and the divalent cations Ca2+, Mg2+, and Mn2+ were studied in sarcoplasmic reticulum and mitochondria. Conductance measurements suggest that A23187 facilitates the movement of divalent cations across bilayer membranes via a primarily electroneutral process, although a cationic form of A23187 does carry some current.On the basis of fluorescence excitation spectra, A23187 can form either a 1:1 or 2:1 complex with Ca2+ in organic solvents. However, in biological membranes, only the 1:1 complexes with Ca2+, Mg2+, or Mn2+ are detected. A23187 produces fluorescent transients under conditions of Ca2+ uptake in sarcoplasmic reticulum, which appear to represent changes in intramembrane Ca2+ content. Changes in A23187 fluorescence due to mitochondrial Ca2+ accumulation are much smaller by comparison and fluorescence transients are not detected.Studies of A23187 fluorescence polarization and lifetimes in biological membranes allow a determination of the rotational correlation time (ρh) of the ionophore. In mitochondria at 22 °C, ρh is 11 nsec in the presence of Ca2+ and Mg2+, and less than 2 nsec in the presence of excess EDTA.The present results are consistent with a model of ionophore-mediated cation transport in which free M2+ binds with A23187 at the membrane surface to form the complex M(A23187)+. Reaction of this complex with another molecule of A23187 at the membrane surfaces results in the formation of electrically neutral M(A23187)2, which carries the divalent cation through the membrane.These results are discussed in terms of physical properties of biological membranes in regions in which divalent cation transport occurs.  相似文献   

10.
Protoplasts from dark-grown wheat (Triticum aestivum L.) maintained at a constant osmotic potential at 22°C, were found to swell upon red irradiation (R) and the effect was negated by subsequent far-red light (FR), indicating phytochrome involvement. Swelling only occurred when Ca2+ ions were present in the surrounding medium, or were added within 10 min after R. Furthermore, Mg2+, Ba2+ or K+ could not replace this requirement for Ca2+. The presence of K+ did not enhance the Ca2+-dependent swelling response. When the Ca2+-ionophore A 23187 was added to the medium, protoplasts swelled in the dark to the same extent as after R. Both the Ca2+-channelblocker Verapamil and La3+ inhibited R-induced swelling. It is proposed that R causes the opening of Ca2+-channels in the plasma membrane. Boyle-van't Hoff analyses of protoplast volume after R and FR are consistent with the conclusion that R irradiation causes changes in membrane properties.Abbreviations EDTA ethylenediaminetetraacetic acid - FR far-red light - nov non-osmotic-volume - Pfr FR-absorbing form of phytochrome - Pr R-absorbing form of phytochrome - R red light  相似文献   

11.
The effects of trifluoperazine hydrochloride (TFP), a calmodulin antagonist, on L-type Ca2+ currents (L-type ICa2+) and their Ca2+-dependent inactivation, were studied in identifiedHelix aspersa neurons, using two microelectrode voltage clamp. Changes in [Ca2+]i were measured in unclamped fura-2 loaded neurons. Bath applied TFP produced a reversible and dose-dependent reduction in amplitude of L-type ICa2+ (IC50=28 μM). Using a double-pulse protocol, we found that TFP enhances the efficacy of Ca2+-dependent inactivation of L-type ICa2+. Trifluoperazine sulfoxide (50 μM), a TFP derivative with low calmodulin-antagonist activity, did not have any effects on either amplitude or inactivation of L-type ICa2+. TFP (20 μM) increased basal [Ca2+]i from 147±37 nM to 650±40nM (N=7). The increase in [Ca2+]i was prevented by removal of external Ca2+ and curtailed by depletion of caffeine-sensitive intracellular Ca2+ stores. Since TFP may also block protein kinase C (PKC), we tested the effect of a PKC activator (12-O-tetradecanoyl-phorbol-13-acetate) on L-type Ca2+ currents. This compound produced an increase in L-type ICa2+ without enhancing Ca2+-dependent inactivation. The results show that 1) TFP reduces L-type ICa2+ while enhancing the efficacy of Ca2+-dependent inactivation. 2) TFP produces an increase in basal [Ca2+]i which may contribute to the enhancement of Ca2+-dependent inactivation. 3) PKC up-regulates L-type ICa2+ without altering the efficacy of Ca2+ dependent inactivation. 4) The TFP effects cannot be attributed to its action as PKC blocker.  相似文献   

12.
Summary Pulses of some Ca2+ channel blockers (dantrolene, Co2+, nifedipine) and calmodulin inhibitors (chlorpromazine) lead to medium (maximally 5–9 h) phase shifts of the circadian conidiation rhythm ofNeurospora crassa. Pulses of high Ca2+, or of low Ca2+, a Ca2+ ionophore (A23187) together with Ca2+, and other Ca2+ channel blockers (La3+, diltiazem), however, caused only minor phase shifts. The effect of these substances (A 23187) and of different temperatures on the Ca2+ release from isolated vacuoles was analyzed by using the fluorescent dye Fura-2. A 23187 and higher temperatures increased the release drastically, whereas dantrolene decreased the permeation of Ca2+ (Cornelius et al., 1989).Pulses of 8-PCTP-cAMP, IBMX and of the cAMP antagonist RP-cAMPS, also caused medium (maximally 6–9 h) phase shifts of the conidiation rhythm. The phase response curve of the agonist was almost 180° out of phase with the antagonist PRC. In spite of some variability in the PRCs of these series of experiments all showed maximal shifts during ct 0–12. The variability of the response may be due to circadian changes in the activity of phosphodiesterases: After adding cAMP to mycelial extracts HPLC analysis of cAMP metabolites showed significant differences during a circadian period with a maximum at ct 0.Protein phosphorylation was tested mainly in an in vitro phosphorylation system (with35S-thio -ATP). The results showed circadian rhythmic changes predominantly in proteins of 47/48 kDa. Substances and treatments causing phase-shifts of the conidiation rhythm also caused changes in the phosphorylation of these proteins: an increase was observed when Ca2+ or cAMP were added, whereas a decrease occurred upon addition of a calmodulin inhibitor (TFP) or pretreatment of the mycelia with higher (42° C) temperatures.Altogether, the results indicate that Ca2+-calmodulin-dependent and cAMP-dependent processes play an important, but perhaps not essential, role in the clock mechanism ofNeurospora. Ca2+ calmodulin and the phosphorylation state of the 47/48-kDa proteins may have controlling or essential functions for this mechanism.  相似文献   

13.
Compound R 24571 (1-[bis(p-chlorophenyl)methyl]-3-[2,4-dichloro-β-(2,4-dichlorobenzyloxy)phenethyl]imidazoliniumchloride) is found to be a powerful inhibitor of red blood cell Ca++-ATPase as well as Ca++ transport into inside-out red blood cell vesicles with an IC50-value of 0.5 and 2 μM, respectively. The inhibitory action of R 24571 is more specific on the calmodulin-dependent fraction of Ca++-transport ATPase as compared to the basal Ca++-transport ATPase (determined in the absence of calmodulin) and can be antagonized by increasing concentrations of calmodulin in an apparently competitive manner. With respect to other ATPases the action of R 24571 is relatively specific for red blood cell Ca++-transport ATPase. Mg++-ATPase requires a 40 times higher concentration for halfmaximal inhibition (IC50 = 20 μM) whereas (Na+ + K+)-transport ATPase is only slightly affected in the investigated concentration range (≤20 μM).  相似文献   

14.
Carol Reiss  Samuel I. Beale 《Planta》1995,196(4):635-641
Excised etiolated cucumber (Cucumis sativus L.) cotyledons that were depleted of external Ca2+ by equilibration with a Ca2+ buffer, which maintained the free Ca2+ concentration at 10–8 M, failed to accumulate chlorophyll upon a 2-h exposure to white light. Increasing amounts of chlorophyll accumulation occurred at increasing external Ca2+ concentrations within the range of 10–7-10–3 M. Preillumination with red light or pretreatment with benzyladenine, which enhanced the rate of light-induced chlorophyll accumulation in control cotyledons, did not overcome the block to light-induced chlorophyll accumulation caused by the depletion of external Ca2+. Etiolated cotyledons that were treated with the Ca2+ ionophore, A23187, and then equilibrated with 10–5 M Ca2+, accumulated significantly more chlorophyll during exposure to light than did untreated cotyledons. The enhancing effect of A23187 was approximately equal to that caused by red-light pretreatment. Etiolated cotyledons that were exposed to the Ca2+ channel-blocking agent, Nd3+ (neodymium), in the presence of 10–5 M Ca2+, did not exhibit an enhancement of chlorophyll accumulation by red-light pretreatment, although they accumulated control levels of chlorophyll upon exposure to light and showed control levels of enhancement of chlorophyll accumulation by cytokinin pretreatment. Conversely, etiolated cotyledons that were equilibrated with 10–5 M Ca2+ in the presence of nifedipine, a blocker of some Ca2+ channels, did not exhibit an enhancement of chlorophyll accumulation by cytokinin pretreatment, although they accumulated control levels of chlorophyll upon exposure to light and showed control levels of enhancement of chlorophyll accumulation by red-light pretreatment. These results indicate that external Ca2+ is required for chlorophyll accumulation by excised etiolated cucumber cotyledons during the first 2 h of light exposure, and that an influx of external Ca2+ is required for the enhancing effect of redlight and cytokinin. The differential abilities of Nd3+ and nifedipine to block the effects of red-light and cytokinin pretreatments suggests that enhancement of chlorophyll accumulation by red-light and cytokinin may involve different classes of Ca2+ channels.Abbreviations A23187 antibiotic 23187 calcium ionophore - Chl chlorophyll - nifedipine 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid dimethyl ester We thank Randy Wayne for advice and encouragement.  相似文献   

15.
 By monitoring 45Ca2+ influx and efflux from oocytes a transient increase followed by a transient decrease in the Ca2+-content of progesterone-treated oocytes was observed. Chelation of intracellular Ca2+ with EGTA or BAPTA-type buffers inhibited progesterone-induced GVBD. Buffers with a mid-range Kd (∼1.5 μm) were most effective in inhibiting GVBD whereas buffers with a Kd above or below this value were less effective. These observations indicate that intracellular Ca2+, probably in the form of a localized release, is required for progesterone-induced oocyte maturation. However, Ca2+ alone was insufficient to induce GVBD. When the effects of nocodazole and taxol upon this Ca2+-requirement were tested, we observed that taxol-induced microtubule polymerization not only delayed progesterone-induced GVBD but also completely inhibited it in combination with BAPTA-AM. Conversely, nocodazole-induced microtubule depolymerization in combination with ionophore A23187 not only accelerated progesterone-induced GVBD, but also induced GVBD in the absence of progesterone. The combined treatment of oocytes with nocodazole and InsP3, or with cold treatment and ionophore A23187 also induced GVBD in the absence of progesterone. Thus, Ca2+ and microtubule depolymerization synergistically promote GVBD. In both nocodazole- and cold-treated oocytes, the GV was displaced to the periphery of the oocyte and underwent GVBD when treated with A23187. However, when the GV was displaced to the cortex by a centrifugal force under conditions that would not cause microtubule depolymerization and the oocyte was treated with A23187, oocytes did not undergo GVBD. Received: 19 January 1996 / Accepted: 21 May 1996  相似文献   

16.
To cast light upon the role of Ca1+ and calmodulin on photosynthetic rate (Pn), dark respiration (RD) and amino acid and protein contents in salinity stressed and non-stressedChlorella cultures, the Ca2+ chelator EGTA [ethylene glycol-bis-(2-aminoethyl ether)-N,N- tetraacetate] and the calmodulin antagonist TFP (trifluperazine) were used. TFP markedly inhibited PN while EGTA exerted a slight, if any, effect on PN. NaCl tolerance, on the other side, was markedly abolished by TFP that inhibited PN and lowered rate of proline accumulation. Calmodulin might be involved in osmoregulation and salt tolerance ofChlorella. RD, however, was markedly enhanced by EGTA and Ca2+-free medium and hence the Ca2+ deprivation increased stress severity exerted by NaCl. Combinations of Na+ and Ca2+ enhanced PN, decreased RD and proline content in comparison with an osmotically equivalent reference culture containing only NaCl. Addition of Ca2+ to TFP treated cultures failed to reactivate calmodulin for proline synthesis. However, when Ca2+ was added to EGTA-treated cultures, only relatively reduced proline contents were recorded.  相似文献   

17.
The enzymatic basis for the Ca2+ pump in human red cells is an ATPase with hysteretic properties. The Ca2+-ATPase shifts slowly between a ground state deficient in calmodulin and an active state saturated with calmodulin, and rate constants for the reversible shifts of state were recently determined at different Ca2+ concentrations (Scharff, O. and Foder, B. (1982) Biochim. Biophys. Acta 691, 133–143). In order to study whether the Ca2+ pump in intact red cells also exhibits hysteretic properties we have analysed transient increases of intracellular calcium concentrations (Cai), induced by the divalent cation ionophore A23187. The time-dependent changes of Cai were measured by use of radioactive calcium (45Ca2+) and analysed with the aid of a mathematical model, based partly on the Ca2+-dependent parameters obtained from Ca2+-ATPase experiments, partly on the A23187-induced Ca2+ fluxes determined in experiments with intact red cells. According to the model a delay in the activation of the Ca2+ pump is a prerequisite for the occurrence of A23187-induced calcium transients in the red cells, and we conclude that the Ca2+ pump in human red cells responds hysteretically. It is suggested that Ca2+ pumps in other types of cell also have hysteretic properties.  相似文献   

18.
红细胞在钙离子和离子载体A23187作用下的流变特性研究   总被引:1,自引:0,他引:1  
用新激光衍射法研究了钙离子及离子载体A23187对红细胞流变特性的影响.用不同浓度的钙离子及离子载体A23187分别处理红细胞后,测量其取向指数和小变形指数.结果表明离子载体A23187较细胞外钙离子浓度对红细胞流变特性的影响更大.而且,最大取向指数和最大小变形指数随着钙离子及离子载体A23187浓度的增加而降低.离子载体A23187浓度增加导致红细胞变形能力明显降低.  相似文献   

19.
Jingmei Zhang  Jiaxi Liu  Zukeng Chen  Jinxing Lin   《Flora》2007,202(7):581-588
The calcium inhibitors A23187, EGTA and La3+ inhibit pollen grain germination and growth of pollen tubes of Lilium davidii var. unicolor at different concentrations. Treatment with 10−4 or 10−5 M ionophores A23187 reduced germination rate and resulted in distortion of pollen tube. Addition of 2 or 10 mM of the chelator EGTA disturbed the direction of pollen tube growth and extended the diameter of pollen tube as observed by light and confocal microscopy. The Ca2+-channel blocker lanthanum chloride (La3+) restrained germination or markedly caused transformation of pollen tube. Furthermore, all treatments led to disappearance of any calcium gradient. Calcium distribution in pollen grain and pollen tube was altered as shown by confocal microscopy for each treatment. This indicates that the inhibitors influence pollen development by affecting the calcium gradient which may play a critical role in germination and tube growth. Fourier transform infrared (FTIR) spectra indicated slight increases in contents of amide I and a substantial decrease in the content of aliphatic esters and saturated esters in treated pollen tubes compared with normal pollen tubes. The FTIR analysis confirmed that EGTA and La3+ weakened the accumulation of ester in pollen tubes, which may be associated with an increased content of amide I.  相似文献   

20.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号