共查询到20条相似文献,搜索用时 0 毫秒
1.
Vascular smooth muscle cells (VSMC) exist in either a contractile or a synthetic phenotype in vitro and in vivo. The molecular mechanisms regulating phenotypic modulation are unknown. Previous studies have suggested that the serine/threonine protein kinase mediator of nitric oxide (NO) and cyclic GMP (cGMP) signaling, the cGMP-dependent protein kinase (PKG) promotes modulation to the contractile phenotype in cultured rat aortic smooth muscle cells (RASMC). Because of the potential importance of the mitogen-activated protein kinase (MAP kinase) pathways in VSMC proliferation and phenotypic modulation, the effects of PKG expression in PKG-deficient and PKG-expressing adult RASMC on MAP kinases were examined. In PKG-expressing adult RASMC, 8-para-chlorophenylthio-cGMP activated extracellular signal- regulated kinases (ERK1/2) and c-Jun N-terminal kinase (JNK). The major effect of PKG activation was increased activation by MAP kinase kinase (MEK). The cAMP analog, 8-Br-cAMP inhibited ERK1/2 activation in PKG-deficient and PKG-expressing RASMC but had no effect on JNK activity. The effects of PKG on ERK and JNK activity were additive with those of platelet-derived growth factor (PDGF), suggesting that PKG activates MEK through a pathway not used by PDGF. The stimulatory effects of cGMP on ERK and JNK activation were also observed in low-passaged, contractile RASMC still expressing endogenous PKG, suggesting that the effects of PKG expression were not artifacts of cell transfections. These results suggest that in contractile adult RASMC, NO-cGMP signaling increases MAP kinase activity. Increased activation of these MAP kinase pathways may be one mechanism by which cGMP and PKG activation mediate c-fos induction and increased proliferation of contractile adult RASMC. 相似文献
2.
Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells 总被引:7,自引:0,他引:7
We investigated the mechanisms of Ca2+ extrusion from cultured rat aortic smooth muscle cells while monitoring changes in the cytosolic Ca2+ concentration ([Ca2+]i) using fura 2 fluorescence. 45Ca2+ efflux from these cells consisted of two major mechanisms; one was dependent on the extracellular sodium concentration (Na+o) and the other was independent of Na+o. Na+o-dependent efflux increased monotonically with increasing [Ca2+]i between 0.1 and 1.0 microM, whereas Na+o-independent efflux reached a plateau at 0.6-1 microM [Ca2+]i with a half-maximum obtained at about 0.16 microM. At [Ca2+]i below 1 microM, the latter was significantly greater than the former. Unlike the Na+o-dependent mechanism, Na+o-independent 45Ca2+ efflux was inhibited almost entirely by extracellularly added La3+ or a combination of high extracellular pH (pH 8.8) and 20 mM Mg2+. It was also inhibited, although not completely, by compound 48/80, a calmodulin antagonist, and vanadate. These results strongly suggest that Na+o-dependent and Na+o-independent 45Ca2+ effluxes occur via the Na+/Ca2+ exchanger and the ATP-dependent Ca2+ pump, respectively. Sodium nitroprusside and atrial natriuretic factor, which are agents that stimulate intracellular production of cGMP, and 8-BrcGMP significantly accelerated the Na+o-independent 45Ca2+ efflux especially at low [Ca2+]i. Forskolin, dibutyryl cAMP, and 8-Br-cAMP, however, showed no stimulation. These results suggest that the plasma membrane Ca2+ pump is regulated by cGMP but not by cAMP in intact vascular smooth muscle cells. 相似文献
3.
Addition of synthesized atriopeptin II (AP-2), a 23 amino acid peptide of rat atria, to rat thoracic aorta smooth muscle cells results in the stimulation of cyclic GMP production by the cells. The EC50 for the effect is 81 nM and a 7 fold increase occurs at 10 microM AP-2. Cyclic GMP levels increased within 15 seconds after the addition of AP-2 and were maximal at 5 minutes. Cyclic GMP levels in primary rabbit kidney cells were increased 15 fold by 10 microM AP-2. However, no increase in cyclic GMP was detected in WI-38 fibroblast cells after the addition of 10 microM AP-2. Cyclic AMP levels were not affected by AP-2 in any of these cell systems. The effect upon cyclic GMP accumulation was specific for AP-2; none of the other compounds or peptides tested affected cyclic GMP levels. 相似文献
4.
Calmodulin purified from bovine brain markedly stimulated cyclic GMP-dependent protein kinase from pig lung in the presence of cyclic GMP. This stimulation by calmodulin did not require Ca2+ and was dose-dependent up to optimal amounts, but the extent of stimulation decreased at concentrations over the optimal condition. The concentrations of cyclic GMP and cyclic AMP producing half-maximal stimulation were 4.5 × 10?8 M and 5.0 × 10?6 M respectively, under optimal conditions. Calmodulin increased maximum velocity without altering the Km for ATP. These effects of calmodulin on cyclic GMP-dependent protein kinase were similar to those of the stimulatory modulator described by Kuo and Kuo (J. Biol. Chem. , 4283–4286, 1976). Ouf findings indicate that calmodulin regulates enzyme activity both Ca2+-dependently and independently. 相似文献
5.
Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle 总被引:9,自引:0,他引:9
Sauzeau V Le Jeune H Cario-Toumaniantz C Smolenski A Lohmann SM Bertoglio J Chardin P Pacaud P Loirand G 《The Journal of biological chemistry》2000,275(28):21722-21729
The potent vasodilator action of cyclic GMP-dependent protein kinase (cGK) involves decreasing the Ca(2+) sensitivity of contraction of smooth muscle via stimulation of myosin light chain phosphatase through unknown mechanisms (Wu, X., Somlyo, A. V., and Somlyo, A. P. (1996) Biochem. Biophys. Res. Commun. 220, 658-663). Myosin light chain phosphatase activity is controlled by the small GTPase RhoA and its target Rho kinase. Here we demonstrate cGMP effects mediated by cGK that inhibit RhoA-dependent Ca(2+) sensitization of contraction of blood vessels and actin cytoskeleton organization in cultured vascular myocytes. Ca(2+) sensitization and actin organization were inhibited by both 8-bromo-cGMP and sodium nitroprusside (SNP). SNP also caused translocation of activated RhoA from the membrane to the cytosol. SNP-induced actin disassembly was lost in vascular myocytes in culture after successive passages but was restored by transfection of cells with cGK I. Furthermore, cGK phosphorylated RhoA in vitro, and addition of cGK I inhibited RhoA-induced Ca(2+) sensitization in permeabilized smooth muscle. 8-Bromo-cGMP-induced actin disassembly was inhibited in vascular myocytes expressing RhoA(Ala-188), a mutant that could not be phosphorylated. Collectively, these results indicate that cGK phosphorylates and inhibits RhoA and suggest that the consequent inhibition of RhoA-induced Ca(2+) sensitization and actin cytoskeleton organization contributes to the vasodilator action of nitric oxide. 相似文献
6.
7.
The effect of neuropeptide Y (NPY) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured smooth muscle cells from porcine aorta (PASMC) and compared with the effect of bradykinin (BK) and angiotensin II (ATII) on [Ca2+]i. All peptides induced dose-dependent and transient rises in [Ca2+]i which were not blocked by extracellular EGTA, but the NPY response was different from the others' as follows. First, the [Ca2+]i rise induced by NPY was not as rapid as that induced by BK or ATII. Second, pertussis toxin abolished the [Ca2+]i rise induced by NPY, but not by BK or ATII. Third, following initial treatment with BK, PASMC were able to respond to NPY, but not to ATII. Finally, BK and ATII, but not NPY, significantly increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation. Although NPY attenuated forskolin-induced accumulation of cyclic AMP, forskolin- and 3-isobutyl-1-methyl-xanthine-induced alterations in intracellular cyclic AMP did not affect the NPY-induced [Ca2+]i rise. These results suggest that NPY increases [Ca2+]i by a pertussis toxin-sensitive GTP binding protein-involved mechanism which is not mediated by the intracellular messengers such as Ins(1,4,5)P3 and cyclic AMP. 相似文献
8.
Wang Y El-Zaru MR Surks HK Mendelsohn ME 《The Journal of biological chemistry》2004,279(23):24420-24426
Cyclic GMP-dependent protein kinase I (PKGI) mediates vascular relaxation by nitric oxide and related nitrovasodilators and inhibits vascular smooth muscle cell (VSMC) migration. To identify VSMC proteins that interact with PKGI, the N-terminal protein interaction domain of PKGIalpha was used to screen a yeast two-hybrid human aortic cDNA library. The formin homology (FH) domain-containing protein, FHOD1, was found to interact with PKGIalpha in this screen. FH domain-containing proteins bind Rho-family GTPases and regulate actin cytoskeletal dynamics, cell migration, and gene expression. Antisera to FHOD1 were raised and used to characterize FHOD1 expression and distribution in vascular cells. FHOD1 is highly expressed in human coronary artery, aortic smooth muscle cells, and in human arterial and venous endothelial cells. In glutathione S-transferase pull-down experiments, the FHOD1 C terminus (amino acids 964-1165) binds full-length PKGI. Both in vitro and intact cell studies demonstrate that the interaction between FHOD1 and PKGI is decreased 3- to 5-fold in the presence of the PKG activator, 8Br-cGMP. Immunofluorescence studies of human VSMC show that FHOD1 is cytoplasmic and is concentrated in the perinuclear region. PKGI also directly phosphorylates FHOD1, and studies with wild-type and mutant FHOD1-derived peptides identify Ser-1131 in the FHOD1 C terminus as the unique PKGI phosphorylation site in FHOD1. These studies demonstrate that FHOD1 is a PKGI-interacting protein and substrate in VSMCs and show that cyclic GMP negatively regulates the FHOD1-PKGI interaction. Based on the known functions of FHOD1, the data are consistent with a role for FHOD1 in cyclic GMP-dependent inhibition of VSMC stress fiber formation and/or migration. 相似文献
9.
Cyclic GMP-dependent protein kinase stimulates the plasmalemmal Ca2+ pump of smooth muscle via phosphorylation of phosphatidylinositol. 总被引:8,自引:3,他引:8
下载免费PDF全文

The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase. 相似文献
10.
Protein kinase C activation stimulates plasma membrane Ca2+ pump in cultured vascular smooth muscle cells 总被引:1,自引:0,他引:1
We examined the effect of phorbol myristate acetate (PMA), a potent activator of protein kinase C, on Ca2+ extrusion from cultured vascular smooth muscle cells (VSMCs) incubated in the absence of added extracellular Na+ (Na+o). Previously, strong experimental evidence was presented that the Na+o-independent Ca2+ extrusion from VSMCs is effected by the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., and Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Brief (2 min) pretreatment of VSMCs with 30-300 nM PMA suppressed the intracellular Ca2+ transient induced with 1 microM ionomycin to about 60% of the control, whereas it accelerated the concomitant Na+o-independent 45Ca2+ extrusion by up to 20%. When the Ca2+ transient was induced with 0.1 microM angiotensin II, the PMA pretreatment markedly suppressed it and reduced also the rate of 45Ca2+ efflux from cells slightly. These effects of PMA were mimicked by 1-oleoyl-2-acetylglycerol, another protein kinase C activator, but were abolished by prior treatment of cells with staurosporine, an inhibitor of protein kinase C, or prior long incubation of cells with PMA. Analysis of the effect of PMA on [Ca2+]i dependence of the rate of Na+o-independent 45Ca2+ efflux revealed that PMA increased the maximum Ca2+ efflux rate without a significant change in the affinity for Ca2+. These results strongly suggest that the plasma membrane Ca2+ pump in VSMCs can be stimulated by PMA and that protein kinase C is involved in regulation of [Ca2+]i in intact VSMCs. 相似文献
11.
The plasma membrane Ca2+ pump ATPase from porcine aorta was isolated by the calmodulin affinity chromatographic method of Kosk-Kosicka et al. (Kosk-Kosicka, D., Scaillet, S., and Inesi, G. (1986) J. Biol. Chem. 261, 3333-3338). Its activity was restored by adding either phosphatidylcholine or phosphatidylserine. Cyclic GMP-dependent protein kinase (G-kinase) stimulated the enzyme in a concentration-dependent manner. However, phosphatidylinositol kinase (PI-kinase) activity was not detected in the enzyme preparation, and the presence of phosphatidylinositol was not necessary for stimulation by G-kinase. Furthermore, adenosine, a potent PI-kinase inhibitor, did not affect the stimulation. The enzyme preparation contained three major proteins, with molecular masses of 240, 145, and 135 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 240- and 135-kDa proteins were phosphorylated in association with the stimulation by G-kinase, but only the phosphorylation of the 240-kDa protein was dependent on the G-kinase concentration. A purified enzyme without the 240-kDa protein, prepared by our previous method (Imai, S., Yoshida, Y., and Sun, H.-T. (1990) J. Biochem. (Tokyo) 107, 755-761), was not activated by G-kinase. Immunoblotting with an antibody against the human erythrocyte Ca2+ pump revealed that the 135-kDa protein corresponded to one of the isoforms of the plasma membrane Ca2+ pump. These results suggest that the phosphorylation of the 240-kDa protein is responsible for stimulation of the plasma membrane Ca2+ pump ATPase by G-kinase. 相似文献
12.
F. Van Coppenolle A. Ahidouch P. Guilbault H. Ouadid 《Molecular and cellular biochemistry》1997,168(1-2):155-161
The effects of cyclic AMP (cAMP) and cyclic GMP (cGMP) on dihydropyridine sensitive Ca2+ channels were investigated under voltage-clamp in defolliculated Pleurodeles oocytes. Intracellular injection of cAMP or extracellular application of the permeable cAMP analogue (8-Bromo cAMP, 8Br-cAMP) decreased the Ba current (IBa). This effect on IBa was blocked by the injection of protein kinase A inhibitor. Similar results were found upon internal application of the catalytic subunit of protein kinase A. In contrast, the injection of cGMP or perfusion of 8Br-cGMP increased IBa amplitude. The increase of IBa by 8Br-cGMP was blocked by the injection of the selective inhibitor of protein kinase G (KT5823).These results support the hypothesis that the basal Ba current amplitude of Pleurodeles oocytes is under the control of Protein Kinases A (PKA) and G (PKG) activity.This regulation of Ca2+ channels by the second messengers, and particularly by cAMP may reflect an important step in the maturation processus of Pleurodeles oocytes. 相似文献
13.
The smooth muscle 132 kDa cyclic GMP-dependent protein kinase substrate is not myosin light chain kinase or caldesmon. 总被引:1,自引:0,他引:1
下载免费PDF全文

Atrial natriuretic peptide (ANP) stimulates the phosphorylation of three cyclic GMP-dependent protein kinase substrate proteins of 225, 132, and 11 kDa (P225, P132 and P11 respectively) in the particulate fraction of cultured rat aortic smooth muscle cells [Sarcevic, Brookes, Martin, Kemp & Robinson (1989) J. Biol. Chem. 264, 20648-20654]. Vrolix, Raeymaekers, Wuytack, Hofmann & Casteels [(1988) Biochem. J. 255, 855-863] have reported the presence of a 130 kDa cyclic GMP-dependent protein kinase substrate protein in the membrane fraction of pig aorta or stomach, and suggested that it may be myosin light chain kinase (MLCK). The aim of the present study was to determine whether P132 from rat aorta was MLCK or caldesmon. Although P132 co-migrates with purified chicken gizzard MLCK on SDS/polyacrylamide gels, it is distinct from rat aortic MLCK. Partially purified MLCK from rat aorta migrated as a 145 kDa protein on SDS/polyacrylamide gels. Immunoblotting the partially purified rat aortic MLCK with antibody to bovine tracheal MLCK identified rat aortic MLCK (145 kDa) and a corresponding 145 kDa protein in the particulate fraction of cultured rat aortic smooth muscle cells, but did not detect the 132 kDa protein. Phosphopeptide maps of purified rat aortic MLCK prepared by digestion with Staphylococcus aureus V8 protease were distinct from those of P132. P132 was not caldesmon, since antibodies to caldesmon cross-reacted with 136 and 76 kDa proteins in the particulate fraction of rat aortic cells, but not with P132. Furthermore, caldesmon was partially extracted from the particulate into the soluble fraction by heating at 90 degrees C, whereas P132 was not. These results demonstrate that the ANP-responsive cyclic GMP-dependent protein kinase substrate of 132 kDa from rat aortic smooth muscle cells is not MLCK or caldesmon. 相似文献
14.
Bonnevier J Fässler R Somlyo AP Somlyo AV Arner A 《The Journal of biological chemistry》2004,279(7):5146-5151
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity. 相似文献
15.
Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture. 总被引:7,自引:0,他引:7
K Furukawa N Ohshima Y Tawada-Iwata M Shigekawa 《The Journal of biological chemistry》1991,266(19):12337-12341
We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs. 相似文献
16.
Intermediate filaments have been proposed, via phosphorylation by protein kinase C, to be involved in sustained contraction of smooth muscle. We examined the effect of angiotensin II on the phosphorylation of the intermediate filament protein, vimentin, in cultured rat aortic vascular smooth muscle cells. Angiotensin II induced phosphorylation of a Triton X-100- and high salt-insoluble protein with a molecular weight of 58,000. This protein was identified as vimentin based on its specific interaction with anti-vimentin antibody as detected by immunoblot analysis. Angiotensin II-induced phosphorylation of vimentin was time- and dose-dependent. Phosphorylation was detectable at 15 s, peaked at 2 min after angiotensin II stimulation, and gradually declined to a new plateau which was sustained for at least 30 min. The threshold, half-maximal and maximal concentrations of angiotensin II that stimulated vimentin phosphorylation were 0.01, 0.1, and 10 nM, respectively. The Ca2+ ionophore, ionomycin, stimulated vimentin phosphorylation to the same extent as angiotensin II, whereas the protein kinase C-activating phorbol ester, phorbol 12-myristate 13-acetate, had only marginal effects on this reaction. Pretreatment of the cells with [ethylene-bis(oxyethylenenitrilo)]tetraacetic acid attenuated angiotensin II- and ionomycin-induced vimentin phosphorylation to the same extent. Down-regulation of protein kinase C induced by prolonged treatment of the cells with phorbol 12,13-dibutyrate did not inhibit angiotensin II-induced vimentin phosphorylation. These results indicate that angiotensin II stimulates vimentin phosphorylation via a Ca2+-dependent, protein kinase C-independent mechanism in vascular smooth muscle cells and suggest that cytoskeletal proteins are major targets for angiotensin II-induced phosphorylation events. 相似文献
17.
P A Iaizzo 《Cell calcium》1992,13(8):513-520
The Ca(2+)-sensitive photoprotein aequorin was used to monitor changes in intracellular [Ca2+] within cultured cells with characteristics of vascular smooth muscle. Two cell lines were investigated: they were A10 cells, which are transformed cells originally derived from rat aorta, and BC3H1 cells obtained from mouse brain neoplasm. Transient increases in intracellular [Ca2+] were induced following exposure to two different volatile anaesthetics (halothane and isoflurane) and various vasoactive substances (acetylcholine, endothelin, histamine, serotonin and vasopressin). The amplitude of the transients induced by isoflurane were more dependent on the presence of extracellular Ca2+ than those induced by halothane, thus the modes and/or locations of action of these two anesthetics are somewhat different. The response of the two cell lines to the vasoactive substances are unique. Receptor activated changes in [Ca2+]i by various agonists were diminished in the presence and absence of either anesthetic. These data suggest that, although the receptor populations within each cell line were slightly different, the prior application of a volatile anesthetic in a clinically-relevant dose induced a transient increase in [Ca2+]i that could subsequently diminish agonist responses. 相似文献
18.
19.
Vascular smooth muscle contractile state is regulated by intracellular calcium levels. Nitric oxide causes vascular relaxation by stimulating production of cyclic GMP, which activates type I cGMP-dependent protein kinase (PKGI) in vascular smooth muscle cells (VSMC), inhibiting agonist-induced intracellular Ca2+ mobilization ([Ca2+]i). The relative roles of the two PKGI isozymes, PKGIalpha and PKGIbeta, in cyclic GMP-mediated inhibition of [Ca2+]i in VSMCs are unclear. Here we have investigated the ability of PKGI isoforms to inhibit [Ca2+]i in response to VSMC activation. Stable Chinese hamster ovary cell lines expressing PKGIalpha or PKGIbeta were created, and the ability of PKGI isoforms to inhibit [Ca2+]i in response to thrombin receptor stimulation was examined. In Chinese hamster ovary cells stably expressing PKGIalpha or PKGIbeta, 8-Br-cGMP activation suppressed [Ca2+]i by thrombin receptor activation peptide (TRAP) by 98 +/- 1 versus 42 +/- 5%, respectively (p <0.002). Immunoblotting studies of cultured human VSMC cells from multiple sites using PKGIalpha- and PKGIbeta-specific antibodies showed PKGIalpha is the predominant VSMC PKGI isoform. [Ca2+]i following thrombin receptor stimulation was examined in the absence or presence of cyclic GMP in human coronary VSMC cells (Co403). 8-Br-cGMP significantly inhibited TRAP-induced [Ca2+]i in Co403, causing a 4-fold increase in the EC50 for [Ca2+]i. In the absence of 8-Br-cGMP, suppression of PKGIalpha levels by RNA interference (RNAi) led to a significantly greater TRAP-stimulated rise in [Ca2+]i as compared with control RNAi-treated Co403 cells. In the presence of 8-Br-cGMP, the suppression of PKGIalpha expression by RNAi led to the complete loss of cGMP-mediated inhibition of [Ca2+]i. Adenoviral overexpression of PKGIbeta in Co403 cells was unable to alter TRAP-stimulated Ca2+ mobilization either before or after suppression of PKGIalpha expression by RNAi. These results support that PKGIalpha is the principal cGMP-dependent protein kinase isoform mediating inhibition of VSMC activation by the nitric oxide/cyclic GMP pathway. 相似文献
20.
We examined the effect of membrane potential (Em) on the activity of the plasma membrane Ca2+ pump in cultured rat aortic smooth muscle cells (VSMCs). Inside-negative K+ diffusion potential higher or lower than the resting Em (-46 mV) was artificially imposed on VSMCs with various concentrations of extracellular K+ (K+o) and 1 microM valinomycin. We found that the recovery phase of the intracellular Ca2+ transient elicited with 1 microM ionomycin was accelerated by depolarizing Em, whereas it was retarded by hyperpolarizing Em. The rate of extracellular Na+ (Na+o)-independent 45Ca2+ efflux from VSMCs stimulated with 1 microM ionomycin increased almost linearly with a change in Em from -98 to -3 mV. This effect of Em was abolished by extracellularly added LaCl3 or a combination of high pH (pH 8.8) and high Mg2+ (20 mM), conditions that presumably inhibit the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., & Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Intracellular contents of Na+ and K+ and intracellular pH, on the other hand, were not influenced by the change in Em under the conditions used. These results indicate that alteration in Em can modulate the intracellular Ca2+ concentration in intact VSMCs by changing the rate of Ca2+ extrusion by the plasma membrane Ca2+ pump. The data strongly suggest that the plasma membrane Ca2+ pump in VSMCs is electrogenic. 相似文献