首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short-term variations in nutrient concentrations of water-masses have been studied in a Brittany estuary over several tidal cycles, during winter and summer. NH inf4 sup+ , NO inf2 su– , NO inf3 sup– , SiO2 and PO inf4 su3– have been measured at a fixed station. The Dourduff estuary is characterized by a very low river discharge (80 l · s–1 during the minimum water runoff and 1 000 l · s–1 during the maximum) and an important tidal range (9 m at spring tides). SiO2 and NO inf3 sup+ concentrations are directly related to freshwater flow whereas PO inf4 su3– is partially adsorbed by seston in the turbid ebb waters. NH inf4 sup+ concentration seems to be, in part, dependent upon sediment resuspension: late ebb and onset of flood periods liberate NH inf4 sup+ into the overlying water column. Nutrient concentrations are also related to seasons. Nutrient fluxes are insignificant or negative during summer periods, so the estuary imports nutrients for its own regulation whereas during winter periods it exports NO inf3 sup– and SiO2 (ca 50 kg NO inf3 sup– and ca 200 g SiO2 during a single spring tide). The NO3: PO4 ratio is always above 15:1 and can reach 300:1; moreover this ratio fluctuates during the tidal cycle. This imbalance originates in terrestrial discharges of nitrogen compounds.
Sels minéraux et cycles de marées dans un estuaire de Bretagne nord (Dourduff, France)
  相似文献   

2.
Summary The effects of short- and long-term exposure to a range in concentration of sea salts on the kinetics of NH inf4 sup+ uptake by Spartina alterniflora were examined in a laboratory culture experiment. Long-term exposure to increasing salinity up to 50 g/L resulted in a progressive increase in the apparent Km but did not significantly affect Vmax (mean Vmax=4.23±1.97 mole·g–1·h–1). The apparent Km increased in a nonlinear fashion from a mean of 2.66±1.10 mole/L at a salinity of 5 g/L to a mean of 17.56±4.10 mole/L at a salinity of 50 g/L. These results suggest that the long-term effect of exposure to total salt concentrations within the range 5–50 g/L was a competitive inhibition of NH inf4 sup+ uptake in S. alterniflora. No significant NH inf4 sup+ uptake was observed in S. alterniflora exposed to 65 g/L sea salts. Short-term exposure to rapid changes in salinity significantly affected both Vmax and Km. Reduction of solution salinity from 35 to 5 g/L did not change Vmax but reduced Km by 71%. However, exposing plants grown at 5 g/L salinity to 35 resulted in an decrease in Vmax of approximately 50%. Exposure of plants grown at 35 g/L to a total sea salt concentration of 50 g/L for 48h completely inhibited uptake of NH inf4 sup+ . For both experiments, increasing salinity led to an increase in the apparent Km similar to that found in response to long-term exposure. Our data are consistent with a conceptual model of changes in the productivity of S. alterniflora in the salt marsh as a function of environmental modification of NH inf4 sup+ uptake kinetics.  相似文献   

3.
Experiments conducted on samples collected from a large oligotrophic lake revealed the following: (1) excretion rates of PO inf4 sup3– by single Daphnia thorata were below detection (5 pmol animal–1 min–1) in 20 ml of oligotrophic lake water over a period of 10 min, (2) experimental addition of D. thorata to 20 ml aliquots of lake water decreased community-wide microbial uptake of PO inf4 sup3– on two occasions (as measured by 32PO inf4 sup3– incorporation), and (3) the presence of D. thorata increased uptake by organisms smaller than 1µm, and decreased uptake by large phytoplankton. The specific mechanism for these responses remains unclear, but the results imply that when phytoplankton larger than 1µm encounter cm scale patches of water recently occupied by Daphnia they may experience decreased PO inf4 sup3– availability rather than elevated concentrations of PO inf4 sup3– caused by excretion. We show that 32P uptake experiments using natural plankton assemblages can be influenced by the presence or absence of large zooplankton, and that neither grazing, turbulence, nor PO inf4 sup3– excretion can account for this influence.  相似文献   

4.
Most Ethiopian lakes are parts of closed drainage systems and collectively form an extensive salinity series, here treated comparatively for geographical, chemical and algal characteristics. Chemical data are presented for 28 lakes and numerous inflows, including original analyses for 15 lakes, in which total ionic concentration and electrical conductivity vary over 4 orders of magnitude. The principal determinant of a lake's position in the series is the open or closed nature of its individual drainage. At present there are three major closed systems (Awash R. — Afar drainage, northern rift lakes, southern rift lakes), numerous crater lakes with seepage -in and -out, and two cryptodepressions with marine inputs. Salinity is primarily determined by evaporative concentration, enhanced in lakes associated with past marine influence or recent volcanic activity by readily soluble materials in the catchment, and by some thermal-reflux pathways. However, anomalously dilute closed lakes exist, indicative of other processes of solute loss (e.g. past basin overflow, reverse weathering, seepage-out).There are strong positive correlations between increasing salinity and the concentrations of Na+, alkalinity and Cl-. The last is used, in conjunction with other analyses of atmospheric precipitation, to estimate the marine and denudative contributions and the evaporative concentration factor, and to distinguish trends of ionic species during evaporative concentration. With several exceptions, affected by past penetration of sea water into the Danakil and L. Assal cryptodepressions, the most saline lakes are soda lakes with HCO3 - + CO inf3 sup2- and Na+ predominant and Ca2+ and Mg2+ largely eliminated. Soluble reactive silicate and phosphate tend to increase in concentration along the salinity series, but the unknown dynamics of algal growth are likely to introduce variance. Concentrations in some lakes are extremely high, e.g. > 40 mg SiO2 l-1 and > 1 mg PO4-P l-1.Phytoplankters recorded from individual lakes are tabulated and where available the community biomass concentration as chlorophyll a is given. Lakes of high salinity-alkalinity are typically very productive in terms of phytoplankton biomass and photosynthetic rates (exceptions: the very deep L. Shala and the very saline L. Abhe), supported in part by relatively high concentrations of phosphorus and inorganic carbon. Many species are of restricted salinity-alkalinity range, being characteristic of waters where levels are low (e.g. desmids, Melosira spp.), intermediate (e.g. Planctonema lauterborni), or high (e.g. Spirulina platensis). Phytoflagellates are most strongly represented in waters with higher concentrations of the bivalent cations Ca2+ and Mg2+. The common cyanophyte Microcystis aeruginosa can tolerate a wide salinity range, here as elsewhere.  相似文献   

5.
Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia)   总被引:1,自引:1,他引:0  
Uptake of NH inf4 sup+ -N by streambed biota of mountain brooks was studied in the alpine zone of the High Tatra Mountains. Experiments were performed involving in situ dosing of ammonium directly to the acidified stream and incubations of ammonium and streambed bryophytes in enclosures within a range of pH from 4.45 to 8.10.NH inf4 sup+ -N uptake length decreased with decreasing stream discharge, while comparable values of discharge-normalized uptake lengths were found during two in situ experiments.Maximum uptake rates of NH inf4 sup+ -N obtained during the incubation of bryophytes (6 to 11 mg m–2 h–1) were comparable with results of two in situ experiments (8 and 12 mg m–2 h–1). The average NH inf4 sup+ -N uptake rates observed during incubations lasting 3 to 5 hours (4.3 mg m–2 h–1) were not related to the pH of stream water. Nitrification of about 50% of the NH inf4 sup+ -N added was observed in non-acidified streams, but was negligible in acidified streams. Significant photoinhibition of nitrification was observed in non-acidified streams during enclosure experiments.  相似文献   

6.
Summary Accumulation of [99Tc]pertechnetate ions (99TcO4 ) by the freshwater microalgae Chlorella emersonii, Chlamydomonas reinhardtii and Scenedesmus obliquus has been characterized. In all three species, accumulation consisted of a single rapid energy-independent phase (biosorption), and no energy-dependent accumulation was observed. Biosorption of 99TcO inf4 sup– by all three species was concentration dependent, followed a Freundlich adsorption isotherm, and was dependent on pH with increased accumulation by cells with decreasing external pH. Elevated external NaCl concentrations also caused increased accumulation of 99TcO inf4 sup– by the cells, as did increased external osmotic potential. Concentrations of K+, Mg2+ and Ca2+ increased accumulation of 99TcO inf4 sup– , but concentrations of HCO inf3 sup– , SO inf4 sup2– and CO inf3 sup2– decreased 99TcO inf4 sup– accumulation by the cells. Most of the 99TcO inf4 sup– accumulated by all three species was easily desorbed by 10 mm buffers at various pH values, 0.5 m NaCl, 10 mm Na2CO3 or 10 mm Na2SO4. No differences in the amount of desorption were observed between the various desorption agents used. Correspondence to: G. M. Gadd  相似文献   

7.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

8.
Chemical and chlorophyll a concentrations of seven Ethiopian rift-valley lakes were studied during 1990–2000. Results were compared with studies made between 1960 and 1990 in an attempt to detect long-term changes. Three different trends are apparent in the salinities (and the correlates conductivity, alkalinity, sodium concentration) of these lakes over the last 40 years: three lakes (lakes Zwai, Shalla and Abaya) have maintained their salinity levels from the 1960s, two lakes (lakes Langano and Awassa) have become more dilute, and the salinity levels of Lake Chamo and the soda lake Abijata have increased. Concentrations of silicate decreased in almost all the lakes whereas soluble reactive phosphorus (SRP) increased in most lakes. Chlorophyll a concentrations were higher in the recent samples from all lakes except two, which in conjunction with results from SRP and silicate analyses suggest eutrophication in four out of the seven lakes studied. The study relates salinization in lakes with closed drainage to increased human activities in their catchments, intensified by changes in climate during the last three decades in sub-Saharan Africa.  相似文献   

9.
Summary A method for removal of toxic hexavalent chromium (chlomate: CrO inf4 sup2– ) was developed by use of dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae (HO1). E. cloacae strain HO1 cells were put in dialysis (semipermeable membrane) sacs, and the sacs were submerged in water containing toxic CrO inf4 sup2– . The dialysis sacs allowed CrO inf4 sup2– to diffuse into the culture, and CrO inf4 sup2– was reduced anaerobically in the dialysis sacs by the E. cloacae cells. Because reduced chromium readily formed insoluble chromium hydroxides in the dialysis sacs, the greater part of reduced chromium was unable to diffuse out through the semipermeable membrane. Thus the dialysis culture of E. cloacae strain HO1 could successfully remove toxic chromium from the surrounding water. If the initial concentration of CrO inf4 sup2– was less than 4mM (208 ppm as chromium), about 90% of the total chromium could be removed from water by the described method. Offprint requests to: H. Ohtake  相似文献   

10.
Diurnal variation in hydrological variables and dissolved inorganic nutrients such as PO inf4 sup3– -P, N O inf2 sup– -N, NO inf3 sup– -N and NH inf4 sup+ -N were studied in three interconnected biotopes including freshwater, marine and mangrove brackish water of the Kakinada coastal zone, Andhra Pradesh. Samples were collected at intervals of 3 hours, for a period of 24 hours. In the marine environment salinity varied from 26 to 32 whereas in the mangrove waters it fluctuated from 12 to 20 and in both biotopes salinity showed bimodal type of oscillation. Dissolved oxygen content was high in the mangrove waters during day time but decreased rapidly during the night hours. In the marine environment POf4 p3–-P concentration varied from 0.345 to 1.195 g at l–1, NO inf3 sup– -N from 1.03 to 6.62 g at l–1 and NO inf2 sup– -N from 0.086 to 0.506 g at l–1. The highest and the lowest concentrations of PO inf4 sup3– -P, NO inf3 sup– -N, NO inf2 sup– -N recorded in the mangrove waters were 0.790 and 0.325 g at l–1, 7.10 and 1.60 g at l–1 and 0.278 and 0.060 g at l–1, respectively. The concentration of PO inf4 sup3– -P, NO inf3 sup– -N and NO inf2 sup– -N were high in the freshwater canal, the maximum and minimum values being 1.110 and 0.730 g at l–1, 26.40 and 9.98 g at l–1 and 0.520 and 0.252 g at l–1 respectively. The concentration of ammonia was relatively high in the mangrove water. Gross and net primary production in the mangrove water was 4 times higher than in the marine biotope. There was no export of dissolved nutrients from the mangrove environment to the adjacent marine waters.  相似文献   

11.
Walker Lake is a monomictic, nitrogen-limited, terminal lake located in western Nevada. It is one of only eight large (Area>100 km2, Z { mean}>15 m) saline lakes of moderate salinity (3–20 g l–1) worldwide, and one of the few to support an endemic trout fishery (Oncorhynchus clarki henshawi). As a result of anthropogenic desiccation, between 1882 and 1996 the lake's volume has dropped from 11.1 to 2.7 km3 and salinity has increased from 2.6 to 12–13 g l–1. This study, conducted between 1992 and 1998, examined the effects of desiccation on the limnology of the lake. Increases in salinity over the past two decades caused the extinction of two zooplankton species, Ceriodaphnia quadrangula and Acanthocyclops vernalis. Recent increases in salinity have not negatively affected the lake's dominant phytoplankton species, the filamentous blue-green algae Nodularia spumigena. In 1994 high salinity levels (14–15 g l–1) caused a decrease in tui chub minnow populations, the main source of food for Lahontan cutthroat trout, and a subsequent decrease in the health of stocked trout. Lake shrinkage has resulted in hypolimnetic anoxia and hypolimnetic accumulation of ammonia (800–2000 g-N l–1) and sulfide (15 mg l–1) to levels toxic to trout. Internal loading of ammonia via hypolimnetic entrainment during summer wind mixing (170 Mg-N during a single event), vertical diffusion (225–500 Mg-N year–1), and fall destratification (540–740 Mg-N year–1) exceeds external nitrogen loading (<25 Mg-N year–1). Increasing salinity in combination with factors related to hypolimnetic anoxia have stressed trout populations and caused a decline in trout size and longevity. If desiccation continues unabated, the lake will be too saline (>15–16 g l–1) to support trout and chub fisheries in 20 years, and in 50–60 years the lake will reach hydrologic equilibrium at a volume of 1.0 km3 and a salinity of 34 g l–1.  相似文献   

12.
Summary Pseudomonas 135, a facultative methylotroph, was cultivated on methanol as a sole carbon and energy source for the accumulation of poly--hydroxybutyric acid (PHB). The cells grew fairly well on minimal synthetic medium containing 0.5% (v/v) of methanol at pH 7.0 and 30° C. The maximum specific growth rate was determined to be 0.26–0.28 h–1 with a growth yield of 0.38 in the optimized growth medium. For stimulation of PHB accumulation in the cells, deficiency of nutrients such as NH inf4 sup+ , Mg2+ and PO inf4 sup3– was crucial even though cell growth was significantly suppressed. The PHB content of a 40-h culture was determined to be 37% of the total cell mass in NH inf4 sup+ -limited medium, 42.5% on Mg2+-deficient medium, and 34.5% on PO inf4 sup3– -deficient medium. The maximum content of PHB in the cells could reach 55% in NH inf4 sup+ -limited fed-batch culture. The average relative molecular eight determined by gel permeation chromatography was 3.7 × 105 in NH inf4 sup+ -limited culture, 2.5 × 105 in Mg2+-deficientmedium, and 3.1 × 105 in PO inf4 sup3– -deficient medium. Polydispersity determined in each culture was relatively high (about 10–11). The solid PHB had a melting temperature of 173° C. Correspondence to: J. M. Lebeault  相似文献   

13.
Irrigated olive is rapidly increasing in arid and semiarid areas, many of which may be negatively affected by soil salinity. We evaluated changes in trunk growth and leaf Cl, Na+ and K+ concentrations in young Arbequina olives (Olea europaea L.) grown in a saline-sodic field over a three-year period. The trunk diameter was measured at the beginning and the end of the 1999 (70 trees), 2000 (59 trees) and 2001 (42 trees) growing periods. Leaves, sampled in August of each year, were analyzed for Cl, Na+ and K+ concentrations. Soil salinity (apparent electrical conductivity, ECa) of each monitored tree was measured 14 times during the 1999–2001 experimental period with an electromagnetic sensor and converted to root zone electrical conductivity of the soil saturation extract (ECe) based on ECa–ECe calibration curves. Salinity tolerance was determined using the Maas and Hoffman threshold–slope response model. Based on salinity thresholds (ECethr), the tolerance of olive in terms of trunk growth was high in 1999 (ECethr = 6.7 dS m–1), but declined with age and time of exposure to salts by 30% in 2000 (ECethr = 4.7 dS m–1) and by 55% in 2001 (ECethr = 3.0 dS m–1). Based on the high absolute slopes obtained in all years (values between 16% and 23% dS–1 m), olive was classified as very sensitive to ECe values above the threshold. Trunk growth thresholds based on leaf ion concentrations varied, depending on years, between 2.6 and 4.0 mg g–1 (Clthr) and between 1.0 and 1.2 mg g–1 (Nathr), indicating that Arbequina olive was less sensitive to leaf Cl and much more sensitive to leaf Na+ than values reported as toxic in greenhouse studies. Leaf K+ slightly decreased with increasing salinity, whereas the K+/Na+ ratio sharply decreased with increasing salinity. We concluded that the initial salinity tolerance of olive was high, but declined sharply with time of exposure to salts and became quite sensitive due primarily to increasing toxic concentrations of Na+ in the leaves.  相似文献   

14.
Concentrations of total phosphorus (TP), inorganic and organic nitrogen, organic matter, and chlorophyll-a were studied in ten mountain lakes at various stages of acidification, trophy, and type of watershed during each July and October from 1987 to 1990. Concentrations of TP and total organic matter were higher in July than in October. Concentrations of NH44 +-N decreased and NO3 -N increased from July to October. The relative composition of total nitrogen (TN) and its concentration were strongly dependent on the type of watershed: the lowest TN concentrations were observed in lakes with forested watersheds, increasing above the timberline and reaching maximum values in acidified lakes with rocky watersheds. In the pool of TN, nitrate was most important in lakes above the timberline (70–86% of TN), and organic nitrogen in forest lakes (> 90% of TN). Lakes with rocky watersheds were characterized by high ratios of TN:TP (> 250 by mass). The concentration of chlorophyll-a varied widely, from 0.01 to 22.6 µg l–1, without any consistent change between July and October, and were P limited.  相似文献   

15.
The distribution of dissolved reactive phosphate, nitrate and nitrite in the waters as well as total organic carbon, total phosphorus and Kjeldahl nitrogen in the sediments of the Shatt al-Arab Estuary and the NW Arabian Gulf were studied from November 1979 to April 1980. The Shatt al-Arab waters contain 0.18 to 0.70 µg-at P-PO inf4 sup3– l–1, 26.12 to 52.39 µg-at N-N0 inf3 sup– l–1 and 0.53 to 0.70 µg-at N-NO inf2 sup– l–1, indicating that this river should be considered a source of nutrients to the Arabian Gulf. It is concluded that most of the nitrate is supplied in dissolved form, while an appreciable amount of phosphate is absorbed to fine suspended particles and released at higher salinities. Total organic carbon in surficial sediments was found to vary between 0.14% and 0.96%. These rather low values are attributed to dilution by dust fallout, which is a major cource of sediments in this area.  相似文献   

16.
M. A. Khan 《Hydrobiologia》1986,135(3):233-242
L. Naranbagh (alt. 1587 m) is a polymictic, shallow marl lake in the flood-plain valley of Kashmir, India. Macrofloral affinities resemble Potamogeton Type of Forsberg (1965) with alkaline waters, not rich in phosphorus. CaCO3 precipitation coupled with decline in Ca2+ and alkalinity values are characteristic of the lake. Fluctuations in Mg2+, Na+, K+, and Cl were relatively conservative. The levels of PO inf4 sup3– -P and NO inf3 sup– -N indicate moderate fertility of the lake water.Persistence of a summer-autumn planktonic algal pulse is related to favourable irradiance, high water temperatures, and increased photosynthetic efficiency values. The most striking seasonality in photosynthetic rates (m–2 h–1) between winter minimum (3 mg Cassim) and summer maximum (75.4 mg Cassim) is determined by mainly climatic changes. Energy flow gave annual phytoplankton production of 51.95 × 102 KJ m–2 for the ecosystem.The nutrient levels and productivity rates suggest mesotrophic status of L. Naranbagh in classic oligoeutrophic classification of lake types.  相似文献   

17.
The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg2+, K+, Cl, Na+, SO42−, and Ca2+) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO43− concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole communities along gradients of salinity and ionic concentrations.  相似文献   

18.
The surface level of Lake Kinneret is regulated to remain between –209 m and –213 m msl. During the stratified period, soluble reactive phosphorus (SRP), ammonium (NH inf4 sup+ ) and dissolved sulphide (H2S) accumulate in the hypolimnion. The concentration of these solutes, which are direct and indirect products of the decomposition of organic matter, increase considerably in summers with lower lake levels. A numerical model describing depth-averaged hypolimnion and epilimnion current velocities for high and low lake levels was adapted for Lake Kinneret. Simulated hypolimnetic currents were shown to be stronger for low lake levels as a result of the fact that low lake levels are characterized by a thinner hypolimnion while the thickness of the epilimnion remains unchanged. We suggest that the stronger hypolimnetic currents have the following consequences: 1. turbulence is induced, 2. the enhanced turbulence results in higher resuspension, 3. because SO4= is available to bacteria on resuspended particles, mineralization rates are enhanced, and 4. focusing of fine sediments and associated organic matter to the pelagic zone is enhanced.  相似文献   

19.
Ulva rigida was cultivated in 7501 tanks at different densities with direct and continuous inflow (at 2, 4, 8 and 12 volumes d–1) of the effluents from a commercial marine fishpond (40 metric tonnes, Tm, of Sparus aurata, water exchange rate of 16 m3 Tm–1) in order to assess the maximum and optimum dissolved inorganic nitrogen (DIN) uptake rate and the annual stability of the Ulva tank biofiltering system. Maximum yields (40 g DW m–2 d–1) were obtained at a density of 2.5 g FW 1–1 and at a DIN inflow rate of 1.7 g DIN m–2 d–1. Maximum DIN uptake rates were obtained during summer (2.2 g DIN M–2 d–1), and minimum in winter (1.1 g DIN m–2 d–1) with a yearly average DIN uptake rate of 1.77 g DIN m–2 d–1 At yearly average DIN removal efficiency (2.0 g DIN m–2 d–1, if winter period is excluded), 153 m2 of Ulva tank surface would be needed to recover 100% of the DIN produced by 1 Tm of fish.Abbreviations DIN= dissolved inorganic nitrogen (NH inf4 sup+ + NO inf3 sup– + NO inf2 sup– ); - FW= fresh weight; - DW= dry weight; - PFD= photon flux density; - V= DIN uptake rate  相似文献   

20.
The contribution of sediment release to the phosphorus budget of hypereutrophic Onondaga Lake was determined through laboratory measurements made on intact cores. Rates ranged from 9–21 mg P m–2 d–1 with a mean of 13 mg P m–2 d–1, values similar to those observed in other lakes of comparable trophic state. There was no statistically significant trend in rates in time (July versus September) or in space (location along the major N/S axis of the lake). Rates of sediment phosphorus release measured in the laboratory compared favorably with the observed rate of soluble reactive phosphorus accumulation in the lake's hypolimnion. The sediments are the second largest source of phosphorus for Onondaga Lake, contributing 24% of the overall phosphorus load to the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号