首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that the cytosolic phospholipase A(2) (cPLA2) pathway is involved in ventilator-induced lung injury (VILI) produced by high peak inflation pressures (PIP) (J Appl Physiol 98: 1264-1271, 2005), but the relative contributions of the various downstream products of cPLA2 on the acute permeability response were not determined. Therefore, we investigated the role of cPLA2 and the downstream products of arachidonic acid metabolism in the high-PIP ventilation-induced increase in vascular permeability. We perfused isolated mouse lungs and measured the capillary filtration coefficient (K(fc)) after 30 min of ventilation with 9, 25, and 35 cmH2O PIP. In high-PIP-ventilated lungs, K(fc) increased significantly, 2.7-fold, after ventilation with 35 cmH2O PIP compared with paired baseline values and low-PIP-ventilated lungs. Also, increased phosphorylation of lung cPLA2 suggested enzyme activation after high-PIP ventilation. However, treatment with 40 mg/kg arachidonyl trifluoromethyl ketone (an inhibitor of cPLA2) or a combination of 30 microM ibuprofen [a cyclooxygenase (COX) inhibitor], 100 microM nordihydroguaiaretic acid [a lipoxygenase (LOX) inhibitor], and 10 microM 17-octadecynoic acid (a cytochrome P-450 epoxygenase inhibitor) prevented the high-PIP-induced increase in K(fc). Combinations of the inhibitors of COX, LOX, or cytochrome P-450 epoxygenase did not prevent significant increases in K(fc), even though bronchoalveolar lavage levels of the COX or LOX products were significantly reduced. These results suggest that multiple mediators from each pathway contribute to the acute ventilator-induced permeability increase in isolated mouse lungs by mutual potentiation.  相似文献   

2.
We have previously implicated calcium entry through stretch-activated cation channels in initiating the acute pulmonary vascular permeability increase in response to high peak inflation pressure (PIP) ventilation. However, the molecular identity of the channel is not known. We hypothesized that the transient receptor potential vanilloid-4 (TRPV4) channel may initiate this acute permeability increase because endothelial calcium entry through TRPV4 channels occurs in response to hypotonic mechanical stress, heat, and P-450 epoxygenase metabolites of arachidonic acid. Therefore, permeability was assessed by measuring the filtration coefficient (K(f)) in isolated perfused lungs of C57BL/6 mice after 30-min ventilation periods of 9, 25, and 35 cmH(2)O PIP at both 35 degrees C and 40 degrees C. Ventilation with 35 cmH(2)O PIP increased K(f) by 2.2-fold at 35 degrees C and 3.3-fold at 40 degrees C compared with baseline, but K(f) increased significantly with time at 40 degrees C with 9 cmH(2)O PIP. Pretreatment with inhibitors of TRPV4 (ruthenium red), arachidonic acid production (methanandamide), or P-450 epoxygenases (miconazole) prevented the increases in K(f). In TRPV4(-/-) knockout mice, the high PIP ventilation protocol did not increase K(f) at either temperature. We have also found that lung distention caused Ca(2+) entry in isolated mouse lungs, as measured by ratiometric fluorescence microscopy, which was absent in TRPV4(-/-) and ruthenium red-treated lungs. Alveolar and perivascular edema was significantly reduced in TRPV4(-/-) lungs. We conclude that rapid calcium entry through TRPV4 channels is a major determinant of the acute vascular permeability increase in lungs following high PIP ventilation.  相似文献   

3.
To determine the influence of experimental model and strain differences on the relationship of vascular permeability to inflammatory cytokine production after high peak inflation pressure (PIP) ventilation, we used isolated perfused mouse lung and intact mouse preparations of Balb/c and B6/129 mice ventilated at high and low PIP. Filtration coefficients in isolated lungs and bronchoalveolar lavage (BAL) albumin in intact mice increased within 20-30 min after initiation of high PIP in isolated Balb/c lungs and intact Balb/c, B6/129 wild-type, and p55 and p75 tumor necrosis factor (TNF) dual-receptor null mice. In contrast, the cytokine response was delayed and variable compared with the permeability response. In isolated Balb/c lungs ventilated with 25-27 cmH(2)O PIP, TNF-alpha, interleukin (IL)-1 beta, IL-1 alpha, macrophage inflammatory protein (MIP)-2, and IL-6 concentrations in perfusate were markedly increased in perfusate at 2 and 4 h, but only MIP-2 was detectable in intact Balb/c mice using the same PIP. In intact wild-type and TNF dual-receptor null mice with ventilation at 45 cmH(2)O PIP, the MIP-2 and IL-6 levels in BAL were significantly increased after 2 h in both groups, but there were no differences between groups in the BAL albumin and cytokine concentrations or in lung wet-to-dry weight ratios. TNF-alpha was not be detected in BAL fluids in any group of intact mice. These results suggest that the alveolar hyperpermeability induced by high PIP ventilation occurs very rapidly and is initially independent of TNF-alpha participation and unlikely to depend on MIP-2 or IL-6.  相似文献   

4.
Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85alpha PI 3-kinase, p110beta PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P(3). The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110beta PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110beta PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.  相似文献   

5.
High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.  相似文献   

6.
Alveolar overdistension due to high peak inflation pressures (PIP) is associated with an increased capillary filtration coefficient (K(fc)). To determine which signal pathways contribute to this injury, we perfused isolated rat lungs with 5% bovine albumin in Krebs solution and measured K(fc) after successive 30-min periods of ventilation with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH(2)O. In a high-PIP control group, K(fc) increased significantly after ventilation with 30 and 35 cmH(2)O PIP, but significant increases were prevented by treatment with 100 microM trifluoperazine, an inhibitor of Ca(2+)/calmodulin, 500 nM ML-7, an inhibitor of myosin light chain kinase (MLCK), a combination of isoproterenol (20 microM) and rolipram (10 microM) to enhance intracellular cAMP levels, and a dose of KT-5720 (2 microM), which inhibits MLCK and protein kinase C. These studies suggest that the Ca(2+)/calmodulin-MLCK pathway augments capillary fluid leak after a modest high-PIP injury and that this is attenuated by kinase inhibition and increased intracellular cAMP.  相似文献   

7.
8.
We compared the transport of three proteins with different hydrodynamic radii with ultrastructural changes in lungs of intact mice ventilated at peak inflation pressures (PIP) of 15, 35, 45, and 55 cmH(2)O for 2 h and PIP of 55 cmH(2)O for 0.5 and 1 h. After 2 h of ventilation, significant increases were observed in plasma Clara cell secretory protein (1.9 nm radius) at 35 cmH(2)O PIP and in bronchoalveolar lavage fluid albumin (3.6 nm radius) at 45 cmH(2)O PIP and IgG (5.6 nm radius) at 55 cmH(2)O PIP. Increased concentrations of all three proteins and lung wet-to-dry weight ratios were significantly correlated with PIP and ventilation time. Clara cell secretory protein and albumin increased significantly after 0.5 h of 55 cmH(2)O PIP, but IgG increased only after 2 h. Separation of endothelium or epithelium to form blebs was apparent only in small vessels (15-30 microm diameter) at 45 cmH(2)O PIP and after 0.5 h at 55 cmH(2)O PIP but became extensive after 2 h of ventilation at 55 cmH(2)O PIP. Junctional gaps between cells were rarely observed. Ultrastructural lung injury and protein clearances across the air-blood barrier were related to ventilation time and PIP levels. Protein clearances increased in relation to molecular size, consistent with increasing dimensions and frequency of transmembrane aqueous pathways.  相似文献   

9.
The early 4 region (E4) of the adenoviral vectors (AdE4(+)) prolongs human endothelial cell (EC) survival and alters the angiogenic response, although the mechanisms for the EC-specific, AdE4(+)-mediated effects remain unknown. We hypothesized that AdE4(+) modulates EC survival through activation of the vascular endothelial (VE)-cadherin/Akt pathway. Here, we showed that AdE4(+), but not AdE4(-) vectors, selectively stimulated phosphorylation of both Akt at Ser(473) and Src kinase in ECs. The phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 and wortmannin abrogated AdE4(+) induction of both phospho-Akt expression and prolonged EC survival. Regulation of phospho-Akt was found to be under the control of various factors, namely VE-cadherin activation, Src kinase, tyrosine kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Downstream targets of Akt signaling resulted in glycogen synthase kinase-3alpha/beta phosphorylation, beta-catenin up-regulation, and caspase-3 suppression, all of which led to AdE4(+)-mediated EC survival. Furthermore, infection with AdE4(+) vectors increased the angiogenic potential of ECs by promoting EC migration and capillary tube formation in Matrigel plugs. This selective AdE4(+)-mediated enhanced motility of ECs was also blocked by PI3K inhibitors. Taken together, these results suggest that activation of the VE-cadherin/Akt pathway is critical for AdE4(+)-mediated survival of ECs and angiogenic potential.  相似文献   

10.
11.
12.
Our previous studies indicated that opioid-induced cardioprotection occurs via activation of mitochondrial ATP-sensitive K(+) (K(ATP)) channels. However, other elements of the Met(5)-enkephalin (ME) cardioprotection pathway are not fully characterized. In the present study, we investigated the role of tyrosine kinase, MAPK, and phosphatidylinositol 3-kinase (PI3K) signaling in ME-induced protection. Ca(2+)-tolerant, adult rabbit cardiomyocytes were isolated by collagenase digestion and subjected to simulated ischemia for 180 min. ME was administered 15 min before the 180 min of simulated ischemia; blockers were administered 15 min before ME. Cell death was assessed by trypan blue as a function of time. The epidermal growth factor receptor (EGFR) kinase inhibitor AG-1478 (250 nM) blocked ME-induced protection, but the inactive analog AG-9 (100 microM) did not. Treatment with herbimycin (1 microM) completely eliminated ME-induced protection. To verify that ME activates EGFR and to determine the involvement of Src, Western blotting of EGFR was performed after ME administration with and without herbimycin A. ME resulted in herbimycin-sensitive robust phosphorylation of EGFR at Tyr(992) and Tyr(1068). Administration of the selective MAPK inhibitor PD-98059 (10 nM) and the specific MEK1/2 inhibitor U-0126 (10 microM) also inhibited ME-induced cardioprotection. ME-induced ERK1/2 phosphorylation was significantly reduced by PD-98059, the EGFR kinase inhibitor PD-153035 (10 microM), and chelerythrine (2 microM). The PI3K inhibitor LY-294002 (20 microM) abrogated ME-induced protection, and ME-induced Akt phosphorylation at Ser(473) was suppressed by LY-294002, PD-153035, and chelerythrine. We conclude that ME-induced cardioprotection is mediated via Src-dependent EGFR transactivation and activation of the PI3K and MAPK pathways.  相似文献   

13.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

14.
Adhesion by means of beta1-integrins induces the phosphorylation of Akt, an event strictly dependent on the activity of the phosphatidylinositol 3-kinase (PI3K). Binding of the p85 regulatory subunit of PI3K to phosphorylated tyrosine 397 in focal adhesion kinase (FAK) is considered to be the mechanism of cell adhesion-induced activation of class Ia PI3K. Here we show that PI3K-dependent phosphorylation of Akt in response to ligation of beta1-integrins occurs efficiently in the absence of FAK tyrosine phosphorylation. Akt S473 phosphorylation was strongly promoted both in cells expressing the integrin subunit splice variant beta1B, which is unable to activate FAK, and in FAK knockout cells. In addition, we found this phosphorylation to be independent of the Src family kinases Src, Fyn and Yes. These results indicate that a major pathway for adhesion-dependent activation of PI3K/Akt is triggered by the membrane proximal part of the beta1 subunit in a FAK and Src-independent manner.  相似文献   

15.
The response of segmental filtration coefficients (Kf) to high peak inflation pressure (PIP) injury was determined in isolated perfused rat lungs. Total (K f,t ), arterial (K f,a ), and venous (K f,v ) filtration coefficients were measured under baseline conditions and after ventilation with 40-45 cmH(2)O PIP. K f,a and K f,v were measured under zone I conditions by increasing airway pressure to 25-27 cmH(2)O. The microvascular segment K f (K f,mv ) was then calculated by: K f,mv = K f,t - K f,a - K f,v. The baseline K f,t was 0.090 +/- 0.022 ml. min(-1). cm H2O(-1). 100 g(-1) and segmentally distributed 18% arterial, 41% venous, and 41% microvascular. After high PIP injury, K f,t increased by 680%, whereas K f,a, K f,v, and K f,mv increased by 398, 589, and 975%, respectively. Pretreatment with 50 microM gadolinium chloride prevented the high PIP-induced increase in K f in all vascular segments. These data imply a lower hydraulic conductance for microvascular endothelium due to its large surface area and a gadolinium-sensitive high-PIP injury, produced in both alveolar and extra-alveolar vessel segments.  相似文献   

16.
Hydrogen peroxide (H2O2) activates signaling cascades essential for cell proliferation via phosphatidylinositol-3-kinase (PI3K) and Akt. Here we show that induction of mitogenic signaling by H2O2 activates sequentially PI3K, Akt, mammalian target of rapamycin (mTOR), and Ran protein. Akt activation is followed by signaling through the mTOR kinase and upregulation of Ran in primary type II pneumocytes, a cell type implicated in the development of lung adenocarcinoma. Pretreatment of the cells with wortmannin, a specific inhibitor of PI3K, or rapamycin, a specific inhibitor of mTOR kinase, prevented H2O2-increased mitosis. H2O2-induced Akt ser-473 phosphorylation and upregulation of Ran protein were prevented by wortmannin but not by rapamycin, indicating that PI3K is upstream of Akt and mTOR is downstream from Akt. Overexpression of myr-Akt or Ran-wt in type II pneumocytes increased Akt ser-473 phosphorylation and mitosis in a catalase-dependent manner, indicating that H2O2 is essential for Akt and Ran signaling. These results indicate that H2O2-induced mitogenic signaling in primary type II pneumocytes is mediated by PI3K, Akt, mTOR-kinase, and Ran protein.  相似文献   

17.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

18.
To study the effects of inflation pressure and tidal volume (VT) on protein permeability in the neonatal pulmonary microcirculation, we measured lung vascular pressures, blood flow, lymph flow (QL), and concentrations of protein in lymph (L) and plasma (P) of 22 chronically catheterized lambs that received mechanical ventilation at various peak inflation pressures (PIP) and VT. Nine lambs were ventilated initially with a PIP of 19 +/- 1 cmH2O and a VT of 10 +/- 1 ml/kg for 2-4 h (base line), after which we overexpanded their lungs with a PIP of 58 +/- 3 cmH2O and a VT of 48 +/- 4 ml/kg for 4-8 h. QL increased from 2.1 +/- 0.4 to 13.9 +/- 5.0 ml/h. L/P did not change, but the ratio of albumin to globulin in lymph relative to the same ratio in plasma decreased, indicating altered protein sieving in the pulmonary microcirculation. Seven other lambs were mechanically ventilated for 2-4 h at a PIP of 34 +/- 1 cmH2O and a VT of 23 +/- 2 ml/kg (base line), after which their chest and abdomen were bound so that PIP increased to 54 +/- 1 cmH2O for 4-6 h without a change in VT. QL decreased on average from 2.8 +/- 0.6 to 1.9 +/- 0.3 ml/h (P = 0.08), and L/P was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Eosinophil major basic protein (MBP) is an effective stimulus for neutrophil superoxide (O(2)(-)) production, degranulation, and IL-8 production. In this study we evaluated the participation of phosphoinositide 3-kinase (PI3K) and PI3K-associated signaling events in neutrophil activation by MBP. Inhibition of PI3K activity blocked MBP-stimulated O(2)(-) production, but not degranulation or IL-8 production. Measurement of Akt phosphorylation at Ser(473) and Thr(308) confirmed that MBP stimulated PI3K activity and also demonstrated indirectly activation of phosphoinositide-dependent kinase-1 by MBP. Genistein and the Src kinase family inhibitor, 4-amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, inhibited MBP-stimulated phosphorylation of Akt. 4-Amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also inhibited MBP-stimulated O(2)(-) production. MBP stimulated phosphorylation and translocation of the p85 subunit of class I(A) PI3K, but not translocation of the p110gamma subunit of class I(B) PI3K, to the neutrophil membrane. Inhibition of protein kinase Czeta (PKCzeta) inhibited MBP-stimulated O(2)(-) production. Measurement of phosphorylated PKCzeta (Thr(410)) and PKCdelta (Thr(505)) confirmed that PKCzeta, but not PKCdelta, is activated in MBP-stimulated neutrophils. The time courses for phosphorylation and translocation of the p85 subunit of class I(A) PI3K, activation of Akt, and activation of PKCzeta were similar. Moreover, inhibition of PI3K activity inhibited MBP-induced activation of PKCzeta. We conclude that MBP stimulates a Src kinase-dependent activation of class I(A) PI3K and, in turn, activation of PKCzeta in neutrophils, which contributes to the activation of NADPH oxidase and the resultant O(2)(-) production in response to MBP stimulation.  相似文献   

20.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号