首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This laboratory has developed a subfracture, joint trauma model in rabbits. Using a dropped impact mass directed onto a slightly abducted joint, chronic softening of retropatellar cartilage and thickening of underlying subchondral bone are documented in studies to 1 year post-insult. It has been hypothesized that these tissue changes are initiated by stresses developed during impact loading. A previous analytical study by this laboratory suggests that tensile strains in retropatellar cartilage can be significantly lowered, without significantly changing the intensity of stresses in the underlying subchondral bone, by reorientation of patellar impact more centrally on the joint. In the current study comparative experiments were performed on groups of animals after either an impact directed on the slightly abducted limb or a more central impact. One-year post-trauma in animals subjected to the central-oriented impact no degradation of the shear modulus for the retropatellar cartilage was documented, but the thickness of the underlying subchondral bone was significantly increased. In contrast, alterations in cartilage and underlying bone following impact on the slightly abducted limb were consistent with previous studies. The current experimental investigation showed the sensitivity of post-trauma alterations in joint tissues to slight changes in the orientation of impact load on the joint. Interestingly, for this trauma model thickening of the underlying subchondral plate occurred without mechanical degradation of the overlying articular cartilage. This supports the current laboratory hypothesis that alterations in the subchondral bone and overlying cartilage occur independently in this animal model.  相似文献   

2.
We have recently developed a trauma model to study degradation of the rabbit patello-femoral joint. Our current working hypothesis is that alterations in retropatellar cartilage and underlying bone in our model are initiated independently by acute overstresses developed in each tissue during blunt insult to the joint, and that the processes of chronic degradation in each tissue are not related in a mechanical sense. The current study was conducted in an attempt to help validate our hypothesis by impacting the patello-femoral joint with a padded interface. Based upon earlier human cadaver experiments, we believe this would reduce the acute overstresses in patellar bone while the stresses developed in the overlying retropatellar cartilage would be sufficient enough to initiate a chronic softening of the tissue. Twenty-four animals received an impact to the patello-femoral joint and were sacrificed at either 0, 4.5, or 12 months post-insult. Three acute animals were impacted to develop a simplified computational model to estimate the stresses in joint tissues. The study showed there was a significant softening of the retropatellar cartilage at 4.5 and 12 months post-trauma, compared to unimpacted controls. However, no thickening of the underlying subchondral bone was documented at any timepoint. This was consistent with a reduction of stress in the bone compared to earlier studies, which document thickened subchondral bone post-insult at the same applied impact load. In conclusion, this study helped validate our hypothesis by documenting chronic softening of cartilage without remodeling of the underlying subchondral bone. Furthermore, this study, along with our earlier studies, suggest that impact load alone, which is currently used by the automobile industry to certify new automobiles, is not a good predictor of chronic injuries to a diarthrodial joint, and that simply the addition of padding to impact interfaces may not be adequate to protect occupants from chronic injuries.  相似文献   

3.
4.
Chronic degeneration of articular cartilage and bone in a rabbit model of post-traumatic osteoarthrosis has been hypothesized to occur due to acute stresses that exceed a threshold for injury. In this study, we impacted the rabbit patellofemoral joint at low and high intensities. High-intensity impacts produced degenerative changes in the joint, such as softening of retropatellar cartilage, as measured by indentation, an increase in histopathology of the cartilage, and an increase in thickness of subchondral bone underlying the cartilage. Low-intensity impacts did not cause these progressive changes. These data suggest that low-intensity impacts produced acute tissue stresses below the injury threshold, while high-intensity impacts produced stresses that exceeded the threshold for disease pathogenesis. This study begins to identify "safe" and "unsafe" ranges of acute tissue stress, using the rabbit patella, which may have future utility in the design of injury prevention devices for the human.  相似文献   

5.
Our laboratory has developed an animal model to study factors leading to chronic disease in a blunt impacted joint. Studies to date indicate post trauma softening of the impacted joint cartilage, but a limited degree of histological degradation in the tissue. The model utilizes treadmill exercise of the animal post trauma. The hypothesis of the current study was that post trauma exercise helps limit histological and mechanical degradation of the impacted retro-patellar cartilage. The study involved a group of animals with enforced exercise on a treadmill and another group with cage-activity post trauma. The animals were sacrificed after 24 months. Mechanical and histological analyses were performed on the retro-patellar cartilage from each group. The impacted versus contra-lateral, non-impacted retro-patellar cartilage was mechanically softened in the exercise group, but not in the cage-activity group. Histological analyses of the tissue from the cage-activity group indicated that this cartilage had less surface integrity, more ossification/calcification, and more erosion than that in the impacted tissue from the exercise group. These tissue changes may lead to an apparent stiffening effect in the impacted cartilage from the cage-activity group at 24 months post-trauma. Potential relationships between the intensity and frequency of post trauma exercise and the mechanical character and histological degradation of the impacted cartilage need additional study. The study indicates that post-trauma exercise can significantly alter the outcome of a blunt knee joint trauma in this experimental animal model.  相似文献   

6.
Several candidate predictors for the occurrence of surface fissures in cartilage, including impact force, shear stress, and tensile strain have been previously proposed without an analytic basis. In this study a controlled impact experiment was performed where a dropped mass and three impact interfaces were used to identify loads associated with the initiation of fissuring. A Finite Element Model of each experiment was used to obtain stresses and strains associated with each impact event. The resulting experimental and analytical data were analyzed using logistic regression in order to determine the strongest predictor of a fissure, and thus to propose a failure criterion for articular cartilage during a blunt insult. The logistic regression indicated that shear stress, rather than impact force or drop height (an indicator of impact energy), was the strongest predictor for the occurrence of a fissure.  相似文献   

7.
Although post-traumatic osteoarthritis accounts for a significant proportion of all osteoarthritis, the understanding of both biological and mechanical phenomena that lead to cartilage degeneration in the years to decades after trauma is still lacking. In this study, we evaluate how cartilage lubrication is altered after a sub-critical impact (i.e., an impact to the cartilage surface that produces surface cracking but not full thickness fissuring). Through utilizing a Stribeck-like framework, the elastoviscous transition, we evaluated changes to both the innate boundary lubricating ability of cartilage after impact and also the effectiveness of high viscosity lubricants to lower friction after impact. Increases in boundary friction coincided with changes in lubricin localization after impact. However, larger increases in friction coefficient were observed in mixed-mode lubrication which can be predicted by increases in surface roughness due to cartilage fissuring. The data here reveal distinct mechanisms of cartilage lubrication that can fail after traumatic impact and may explain a key mechanical phenomenon that predisposes cartilage to development of osteoarthritis after injury.  相似文献   

8.
Epidemiological studies show that tibial plateau fractures comprise about 10% of all below-knee injuries in car crashes. Studies from this laboratory document that impacts to the tibiofemoral (TF) joint at 50% of the energy producing gross fracture can generate cartilage damage and microcracks at the interface between calcified cartilage and underlying subchondral bone in the tibial plateau. These injuries are suggestive of the initiation for a long term chronic disease, such as osteoarthritis. The disease process may be further encouraged by acute damage to chondrocytes in the cartilage overlying areas of occult microcracking. The hypothesis of the current study was that significant damage to chondrocytes in tibial plateau cartilage could be generated in areas of high contact pressure by a single impact delivered to the rabbit TF joint, without a gross fracture of bone. Three rabbits received a single, 13 J of energy blunt insult to the TF joint, while another three animals were used as controls. Cell viability analyses compared chondrocyte damage in impacted versus control cartilage. Two additional rabbits were impacted to document contact pressures generated in the TF joint. The study showed high contact pressures in uncovered areas of the plateau, with a trend for higher pressures in the lateral versus medial facets. A significantly higher percentage of damaged chondrocytes existed in impacted versus the opposite, nonimpacted limbs. Additionally, more chondrocyte damage was documented in the superficial zone (top 20% of cartilage thickness) of the cartilage compared to middle (middle 50% of thickness) and deep (bottom 30% of thickness) zones. This study showed that a single blunt insult to the in situ rabbit TF joint, generating large areas of contact pressure exceeding 20 MPa, produces significant chondrocyte damage in the tibial articular cartilage, especially in the superficial zone, without gross fracture of bone. Future studies will be needed to investigate the long term, chronic outcome of this blunt force joint trauma.  相似文献   

9.
Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.  相似文献   

10.
A dynamic nonlinear finite element model was developed to study juxtarticular stresses in the splinted rabbit knee, an established laboratory model for creating osteoarthrosis due to impulsive loading. Plane strain finite element results were validated by comparison with corresponding experimental data. Parametric effects studied included the input tibial displacement speed, the local bone density distribution, and the modulus of cartilage and subchondral bone. While the computed resultant contact force magnitude was sensitive to a number of model parameters, the stress patterns, when normalized to a given resultant force magnitude, were not. Despite comparable force peaks, the finite element results showed approximately six-fold higher effective strain rate levels for a severely impulsive loading protocol known to induce rapid osteoarthrosis, versus those for a mildly impulsive loading protocol not usually associated with cartilage damage. A propensity for elevated shear in the deep cartilage layer near the contact periphery, observed in nearly all computed stress distributions, is consistent with previous experimental findings of fissuring at that level in the impulsively loaded rabbit knee.  相似文献   

11.
The knee is often a site of injury that can often lead to a chronic disease known as osteoarthritis (OA). The disease may be initiated, in part, by acute injuries to joint cartilage and its cells. In a recent study by this laboratory, using Flemish Giant rabbits, an impact compressive load on the tibial femoral joint was shown to cause significant levels of acute damage to chondrocytes in cartilage of the medial and lateral tibial plateaus. In the current study, using the same model, histological and mechanical data from the plateaus were documented at 6 and 12 months post impact, and compared to the unimpacted control limbs and a limb from unimpacted, control animals. The mechanical properties of cartilage were measured with indentation relaxation tests on the medial and lateral plateaus in regions covered and uncovered by the meniscus. The histological studies on impacted limbs showed surface lesions on both plateaus, thickening of the underlying subchondral bone at 12 months and numerous occult microcracks at the calcified cartilage–subchondral bone interface at 6 and 12 months, without significant changes in cartilage thickness or its mechanical properties versus controls. Yet, there was an increase in both the matrix and fiber moduli and a decrease in the permeability of uncovered, medial plateau cartilage in both limbs of impacted animals between 6 and 12 months post impact that was not documented in control animals.  相似文献   

12.
Osteoarthritis (OA) is a joint disease characterized by cartilage degeneration, a thickening of subchondral bone, and formation of marginal osteophytes. Previous mechanical characterization of cartilage in our laboratory suggests that energy storage and dissipation is reduced in osteoarthritis as the extent of fibrillation and fissure formation increases. It is not clear whether the loss of energy storage and dissipation characteristics is a result of biochemical and/or biophysical changes that occur to hyaline cartilage in joints. The purpose of this study is to present data, on the strain rate dependence of the elastic and viscous behaviors of cartilage, in order to further characterize changes that occur in the mechanical properties that are associated with OA. We have previously hypothesized that the changes seen in the mechanical properties of cartilage may be due to altered mechanochemical transduction by chondrocytes. Results of incremental tensile stress-strain tests at strain rates between 100%/min and 10,000%/min conducted on OA cartilage indicate that the slope of the elastic stress-strain curve increases with increasing strain rate, unlike the reported behavior of skin and self-assembled collagen fibers. It is suggested that the strain-rate dependence of the elastic stress-strain curve is due to the presence of large quantities of proteoglycans (PGs), which protect articular cartilage by increasing the apparent stiffness. The increased apparent stiffness of articular cartilage at high strain rates may limit the stresses borne and prolong the onset of OA. It is further hypothesized that increased compressive loading of chondrocytes in the intermediate zone of articular cartilage occurs as a result of normal wear to the superficial zone or from excessive impact loading. Once the superficial zone of articular cartilage is worn away, the tension is decreased throughout all cartilage zones leading to increased chondrocyte compressive loading and up-regulation of mechanochemical transduction processes that elaborate catabolic enzymes.  相似文献   

13.
Various impact models have been used to study the injury mechanics of blunt trauma to diarthrodial joints. The current study was designed to study the relationship between impactor energy and mass on impact biomechanics and injury modalities for a specific test condition and protocol. A total of 48 isolated canine knees were impacted once with one of three free flight inertial masses (0.7, 1.5, or 4.8 kg) at one of three energy levels (2, 11, 22 J). Joint impact biomechanics (peak load, loading rate, contact area) generally increased with increasing energy. Injuries were typically more frequent and more severe with the larger mass at each energy level. Histological analyses of the patellae revealed cartilage injuries at low energy with deep injuries in underlying bone at higher energies.  相似文献   

14.
An apparatus was designed for mechanical compression of cultured articular cartilage explants with acylindrical plain-ended loading head (diameter 2-5 mm) driven by a stepping motor. A load cell under the culture dish was applied for feedback regulation utilizing a microprocessor-based control unit. The operating programs allowed either continuous or cyclic loading, the latter with adjustable loading/resting ratio. The improvements in the present design compared with previously described apparatuses for similar purposes include: (1) the accurately controlled compression by a load cell and a rapid feedback circuit; (2) the wide range of selectable stresses (25 kPa-12.5 MPa) with both continuous and cyclic loading modes; (3) the ability to handle cycles as short as 1 s with 15 ms peak loading phase. Using a 4 s cycle and 0.5 MPa load for 1.5 h resulted in a significantly enhanced incorporation of radiosulphate in cultured bovine articular cartilage explants, suggesting a stimulation of proteoglycan synthesis. Light and scanning electron microscopic examinations revealed a slight depression and superficial alterations in cartilage structure at the impact site following high pressures. We expect that this apparatus will help in revealing how articular cartilage tissue and chondrocytes respond to external mechanical stimuli.  相似文献   

15.
Stress analysis of contact models for isotropic articular cartilage under impacting loads shows high shear stresses at the interface with the subchondral bone and normal compressive stresses near the surface of the cartilage. These stress distributions are not consistent, with lesions observed on the cartilage surface of rabbit patellae from blunt impact, for example, to the patello-femoral joint. The purpose of the present study was to analyze, using the elastic capabilities of a finite element code, the stress distribution in more morphologically realistic transversely isotropic biphasic contact models of cartilage. The elastic properties of an incompressible material, equivalent to those of the transversely isotropic biphasic material at time zero, were derived algebraically using stress-strain relations. Results of the stress analysis showed the highest shear stresses on the surface of the solid skeleton of the cartilage and tensile stresses in the zone of contact. These results can help explain the mechanisms responsible for surface injuries observed during blunt insult experiments.  相似文献   

16.
Cracks in articular cartilage are a common sign of joint damage, but failure properties of cartilage are poorly understood, especially for damage initiation. Cartilage failure may be further complicated by rate-dependent and depth-dependent properties, including the compliant surface layer. Existing blunt impact methods do not resolve local cartilage inhomogeneities and traditional fracture mechanics tests induce crack blunting and may violate underlying assumptions of linear elasticity. To address this knowledge gap, we developed and applied a method to indent cartilage explants with a sharp blade and initiate damage across a range of loading rates (strain rates 0.5%/s–500%/s), while recording local sample deformation and strain energy fields using confocal elastography. To investigate the importance of cartilage’s compliant surface, we repeated the experiment for samples with the surface removed. Bulk data suggest a critical force at which the tissue cuts, but local strains reveals that the deformation the sample can sustain before reaching this force is significantly higher in the surface layer. Bulk and local results also showed significant rate dependence, such that samples were easier to cut at faster speeds. This result highlights the importance of rate for understanding cracks in cartilage and parallels recent studies of rate-dependent failure in hydrogels. Notably, local sample deformation fields were well fit by classical Hookean elasticity. Overall, this study illustrates how local and global measurements surrounding the initiation of damage in articular cartilage can be combined to reveal the importance of cartilage’s zonal structure in protecting against failure across physiologically relevant loading rates.  相似文献   

17.
The aim of this work was to develop an equine metacarpophalangeal joint model that induces osteoarthritis that is not primarily mediated by instability or inflammation. The study involved six Standardbred horses. Standardized cartilage surface damage or “grooves” were created arthroscopically on the distal dorsal aspect of the lateral and medial metacarpal condyles of a randomly chosen limb. The contralateral limb was sham operated. After 2 weeks of stall rest, horses were trotted 30 minutes every other day for 8 weeks, then evaluated for lameness and radiographed. Synovial fluid was analyzed for cytology and biomarkers. At 10 weeks post-surgery, horses were euthanized for macroscopic and histologic joint evaluation. Arthroscopic grooving allowed precise and identical damage to the cartilage of all animals. Under the controlled exercise regime, this osteoarthritis groove model displayed significant radiographic, macroscopic, and microscopic degenerative and reactive changes. Histology demonstrated consistent surgically induced grooves limited to non-calcified cartilage and accompanied by secondary adjacent cartilage lesions, chondrocyte necrosis, chondrocyte clusters, cartilage matrix softening, fissuring, mild subchondral bone inflammation, edema, and osteoblastic margination. Synovial fluid biochemistry and cytology demonstrated significantly elevated total protein without an increase in prostaglandin E2, neutrophils, or chondrocytes. This equine metacarpophalangeal groove model demonstrated that standardized non-calcified cartilage damage accompanied by exercise triggered altered osteochondral morphology and cartilage degeneration with minimal or inefficient repair and little inflammatory response. This model, if validated, would allow for assessment of disease processes and the effects of therapy.  相似文献   

18.
Articular cartilage consists of both solid and fluid phases with fissures observed on the surface occurring in the solid portion. In order to determine which of the solid phase stresses provides the best predictor for the initiation of a fissure, elastic stresses from a series of in vitro impact experiments were used to derive stresses in the solid phase of the cartilage. This stress information was then analyzed using a logistic regression to identify the best predictor of fissuring. The mechanical analysis indicated that low-magnitude tensile solid hoop stress develops in the solid phase within the contact zone in impacts involving the two smaller radius interfaces. The logistic regression, however, indicated that maximum shear stress in the solid (which is equal to the shear stress from the elastic analysis) was the best predictor of the occurrence of a fissure. This study helps support the suggestion that in stress fields dominated by compression, the maximum shear stress from an elastic analysis may be used to predict fissure initiation in cartilage.  相似文献   

19.
An analytical model of two elastic spheres with two elastic layers in normal, frictionless contact is developed which simulates contact of articulating joints, and allows for the calculation of stresses and displacements in the layered region of contact. Using various layer/layer/substrate combinations, the effects of variations in layer and substrate properties are determined in relation to the occurrence of tensile and shear stresses as the source of crack initiation in joint cartilage and bone. Vertical cracking at the cartilage surface and horizontal splitting at the tidemark have been observed in joints with primary osteoarthritis. Deep vertical cracks in the calcified cartilage and underlying bone have been observed in blunt trauma experiments. The current model shows that cartilage stresses for a particular system are a function of the ratio of contact radius to total layer thickness (a/h). Surface tension, which is observed for a/h small, is alleviated as a/h is increased due to increased load, softening and/or thinning of the cartilage layer. Decreases in a/h due to cartilage stiffening lead to increased global compressive stresses and increased incidence of surface tension, consistent with impact-induced surface cracks. Cartilage stresses are not significantly affected by variations in stiffness of the underlying material. Tensile radial strains in the cartilage layer approach one-third of the normal compressive strains, and increase significantly with cartilage softening. For cases where the middle layer stiffness exceeds that of the underlying substrate, tensile stresses occur at the base of the middle layer, consistent with impact induced cracks in the zone of calcified cartilage and subchondral bone. The presence of the superficial tangential zone appears to have little effect on underlying cartilage stresses.  相似文献   

20.
Failure of articular cartilage has been investigated experimentally and theoretically, but there is only partial agreement between observed failure and predicted regions of peak stresses. Since trauma and repetitive stress are implicated in the etiopathogenesis of osteoarthritis, it is important to develop cartilage models which correctly predict sites of high stresses. Cartilage is anisotropic and inhomogeneous, though it has been difficult to incorporate these complexities into engineering analyses. The objectives of this study are to demonstrate that a transversely isotropic, biphasic model of cartilage can provide agreement between predicted regions of high stresses and observed regions of cartilage failure and that with transverse isotropy cartilage stresses are more sensitive to convexity and concavity of the surfaces than with isotropy. These objectives are achieved by solving problems of diarthrodial joint contact by the finite-element method. Results demonstrate that transversely isotropic models predict peak stresses at the cartilage surface and the cartilage-bone interface, in agreement with sites of fissures following impact loading; isotropic models predict peak stresses only at the cartilage-bone interface. Also, when convex cartilage layers contacted concave layers in this study, the highest tensile stresses occur in the convex layer for transversely isotropic models; no such differences are found with isotropic models. The significance of this study is that it establishes a threshold of modeling complexity for articular cartilage that provides good agreement with experimental observations under impact loading and that surface curvatures significantly affect stress and strain within cartilage when using a biphasic transversely isotropic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号