首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmepsin (Plm) is a potential target for new antimalarial drugs, but most reported Plm inhibitors have relatively low antimalarial activities. We synthesized a series of dipeptide-type HIV protease inhibitors, which contain an allophenylnorstatine-dimethylthioproline scaffold to exhibit potent inhibitory activities against Plm II. Their activities against Plasmodium falciparum in the infected erythrocyte assay were largely different from those against the target enzyme. To improve the antimalarial activity of peptidomimetic Plm inhibitors, we attached substituents on a structure of the highly potent Plm inhibitor KNI-10006. Among the derivatives, we identified alkylamino compounds such as 44 (KNI-10283) and 47 (KNI-10538) with more than 15-fold enhanced antimalarial activity, to the sub-micromolar level, maintaining their potent Plm II inhibitory activity and low cytotoxicity. These results suggest that auxiliary substituents on a specific basic group contribute to deliver the inhibitors to the target Plm.  相似文献   

2.
New inhibitors of plasmepsin I and II, the aspartic proteases of the malaria parasite Plasmodium falciparum, are described. From paralell solution phase chemistry, several reversed-statine type isostere inhibitors, many of which are aza-peptides, have been prepared. The synthetic strategy delivers the target compounds in good to high overall yields and with excellent stereochemical control throughout the developed route. The final products were tested for their plasmepsin I and II inhibiting properties and were found to exhibit modest but promising activity. The best inhibitor exhibits K(i) values of 250 nM and 1.4 microM for Plm I and II, respectively.  相似文献   

3.
We attached 2-aminoethylamino groups to allophenylnorstatine-containing plasmepsin (Plm) inhibitors and investigated SAR of the methyl or ethyl substitutions on the amino groups. Unexpectedly, compounds 22 (KNI-10743) and 25 (KNI-10742) exhibited extremely potent Plm II inhibitory activities (Ki <0.1 nM). Moreover, among our peptidomimetic Plm inhibitors, we identified the compounds with the highest antimalarial activity using a SYBR Green I-based fluorescence assay.  相似文献   

4.
Abstract

A series of compounds incorporating 3-(3-(2/3/4-substituted phenyl)triaz-1-en-1-yl) benzenesulfonamide moieties were synthesised and their chemical structure was confirmed by physico-chemical methods. Carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the compounds were evaluated against human isoforms hCA I and II. KI values of these sulphonamides were in the range of 21?±?4–72?±?2?nM towards hCA I and in the range of 16?±?6–40?±?2?nM against hCA II. The 4-fluoro substituted derivative might be considered as an interesting lead due to its effective inhibitory action against both hCA I and hCA II (KIs of 21?nM), a profile rarely seen among other sulphonamide CA inhibitors, making it of interest in systems where the activity of the two cytosolic isoforms is dysregulated.  相似文献   

5.
A library of benzenesulphonamides incorporating 1,2,3-triazole rings functionalised with ester, carboxylic acid, carboxamide, carboxyhydrazide, and hydroxymethyl moieties were synthesised. The carbonic anhydrase (CAs, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV, and hCA IX. Among them, hCA II and IV are anti-glaucoma drug targets, being involved in aqueous humour secretion within the eye. hCA I was inhibited with Ki’s ranging between 8.3?nM and 0.8737?µM. hCA II, the physiologically dominant cytosolic isoform, was excellently inhibited by these compounds, with Ki’s in the range of 1.6–9.4?nM, whereas hCA IV was effectively inhibited by most of them, with Ki’s in the range of 1.4–55.3?nM. Thirteen of the twenty sulphonamides were found to be excellent inhibitors of tumour associated hCA IX with Ki’s?≤?9.5?nM. Many of the new compounds reported here showed low nM inhibitory action against hCA II, IV, and IX, isoforms involved in glaucoma and some tumours, making them interesting candidates for further medicinal chemistry/pharmacologic studies.  相似文献   

6.
Abstract

With the aim to obtain novel compounds possessing both strong affinity against human carbonic anhydrases and low toxicity, we synthesised novel thiourea and sulphonamide derivatives 3, 4 and 10, and studied their in vitro inhibitory properties against human CA I, CA II and CA IX. We also evaluated the toxicity of these compounds using zebrafish larvae. Among the three compounds, derivative 4 showed efficient inhibition against hCA II (KI = 58.6?nM). Compound 10 showed moderate inhibition against hCA II (KI = 199.2?nM) and hCA IX (KI = 147.3?nM), whereas it inhibited hCA I less weakly at micromolar concentrations (KI = 6428.4?nM). All other inhibition constants for these compounds were in the submicromolar range. The toxicity evaluation studies showed no adverse effects on the zebrafish larvae. Our study suggests that these compounds are suitable for further preclinical characterisation as potential inhibitors of hCA I, II and IX.  相似文献   

7.
Abstract

In this study, newly synthesised compounds 6, 8, 10 and other compounds (1–5, 7 and 9) and their inhibitory properties against the human isoforms hCA I and hCA II were reported for the first time. Compounds 1–10 showed effective inhibition profiles with K I values in the range of 5.13–16.9?nM for hCA I and of 11.77–67.39?nM against hCA II, respectively. Molecular docking studies were also performed with Glide XP to get insight into the inhibitory activity and to evaluate the binding modes of the synthesised compounds to hCA I and II. More rigorous binding energy calculations using MM-GBSA protocol which agreed well with observed activities were then performed to improve the docking scores. Results of in silico calculations showed that all compounds obey drug likeness properties. The new compounds reported here might be promising lead compounds for the development of new potent inhibitors as alternatives to classical hCA inhibitors.  相似文献   

8.
A series of new 1,3-diaryltriazene sulfonamides was synthesised by reaction of diazonium salt of metanilamide (3-aminobenzene sulfonamide) with substituted aromatic amines. The obtained new compounds were assayed as inhibitors of four physiologically and pharmacologically relevant human (h) isoforms of carbonic anhydrases (CA, EC 4.2.1.1), specifically, hCA I, hCA II, and hCA VII (cytosolic isoforms), as well as the tumour-associated membrane-bound isoform hCA IX. All isoforms investigated here were inhibited by the newly synthesised 1,3-diaryltriazene sulfonamide derivatives from the micromolar to the nanomolar range. The cytosolic isoforms were inhibited with Kis in the range of 92.3–8371.1?nM (hCA I), 4.3–9194.0?nM (hCA II), and 15.6–9477.8?nM (hCA VII), respectively. For the membrane-bound tumour-associated isoform hCA IX, the KI-s ranged between 50.8 and 9268.5?nM. The structure–activity relationship (SAR) with these newly synthesised metanilamide derivatives are discussed in detail.  相似文献   

9.
Human carbonic anhydrase inhibitors (hCAIs) are a key therapeutic class with a multitude of novel applications such as anticonvulsants, topically acting antiglaucoma, and anticancer drugs. Herein, a new series of 4-anilinoquinazoline-based benzenesulfonamides were designed, synthesised, and biologically assessed as potential hCAIs. The target compounds are based on the well-tolerated kinase scaffold (4-anilinoquinazoline). Compounds 3a (89.4 nM), 4e (91.2 nM), and 4f (60.9 nM) exhibited 2.8, 2.7, and 4 folds higher potency against hCA I when compared to the standard (AAZ, V), respectively. A single digit nanomolar activity was elicited by compounds 3a (8.7 nM), 4a (2.4 nM), and 4e (4.6 nM) with 1.4, 5, and 2.6 folds of potency compared to AAZ (12.1 nM) against isoform hCA II, respectively. Structure-activity relationship (SAR) and molecular docking studies validated our design approach that revealed highly potent hCAIs.  相似文献   

10.
A series of novel sulphonamide derivatives was obtained from sulphanilamide which was N4-alkylated with ethyl bromoacetate followed by reaction with hydrazine hydrate. The hydrazide obtained was further reacted with various aromatic aldehydes. The novel sulphonamides were characterised by infrared, mass spectrometry, 1H- and 13C-NMR and purity was determined by high-performance liquid chromatography (HPLC). Human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II and Mycobacterium tuberculosis β-CA encoded by the gene Rv3273 (mtCA 3) inhibition activity was investigated with the synthesised compounds which showed promising inhibition. The KIs were in the range of 54.6?nM–1.8?µM against hCA I, in the range of 32.1?nM–5.5?µM against hCA II and of 127?nM–2.12?µM against mtCA 3.  相似文献   

11.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

12.
A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C–O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8ao) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4–17.6?nM.  相似文献   

13.
In search of selective carbonic anhydrase (CA) IX inhibitors endowed with apoptotic inducing properties, we designed and synthesised two subsets of 4- and 3-(5-aryl-(4-phenylsulphonyl)-1H-1,2,3-triazol-1-yl)benzenesulphonamides. All compounds were assayed for human carbonic anhydrase (hCA) isoforms I, II, IV, and IX inhibition. Isoforms hCA I and hCA IV were weakly inhibited by most of the synthesised compounds. Many four-substituted benzenesulphonamides displayed low nanomolar inhibition against isoform hCA II, unlike the three-substituted analogues. All target compounds exhibited good inhibition profile with KI values ranging from 16.4 to 66.0 nM against tumour-associated isoform hCA IX. Some selective and potent inhibitors of hCA IX were assayed for in vitro apoptotic induction in goat testicular cells. Compounds 10d and 10h showed interesting apoptotic induction potential. The present study may provide insights into a strategy for the design of novel anticancer agents based on hCA inhibitors endowed with apoptotic interference.  相似文献   

14.
A series of Schiff's bases was prepared by reaction of 3-formyl-chromone or 6-methyl-3-formyl-chromone with aromatic sulfonamides, such as sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide, a pyrimidinyl-substituted sulfanilamide derivative, sulfaguanidine and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide. The zinc complexes of these sulfonamides have also been obtained. The new derivatives and their Zn(II) complexes were investigated for the inhibition of four physiologically relevant isozymes of carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms I and II, as well as the tumor-associated, transmembrane isozymes CA IX and XII. Except for the sulfaguanidine-derived compounds which were devoid of activity against all isozymes, the other sulfonamides and their metal complexes showed interesting inhibitory activity. Against isozyme CA I, the inhibition constants were in the range of 13-100 nM, against isozyme CA II in the range of 1.9-102 nM, against isozyme CA IX in the range of 6.3-48nM, and against CA XII in the range of 5.9-50nM. Generally, the formyl-chromone derived compounds were better CA inhibitors as compared to the corresponding 6-methyl-chromone derivatives, and for the simple, benzenesulfonamide derivatives activity increased with an increase of the spacer from sulfanilamide to homosulfanilamide and 4-aminoethylbenzenesulfonamide derivatives, respectively. Some of these compounds may show applications for the development of therapies targeting hypoxic tumors in which CA IX and XII are often highly overexpressed.  相似文献   

15.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

16.
With the aim to develop inhibitors of the plasmepsin I and II aspartic proteases of the malaria parasite Plasmodium falciparum, we have synthesized sets of libraries from novel reversed-statine isosteres, using a combination of solution phase and solid phase chemistry. The synthetic strategy furnishes the library compounds in good to high overall yields and with excellent stereochemical control throughout the developed route. The products were evaluated for their plasmepsin I and II inhibiting properties and were found to exhibit modest but promising activity. The best inhibitor exhibits an in vitro activity of 28% inhibition of plasmepsin II at an inhibitor concentration of 0.5 microM (K(i) for Plm II=5.4 microM).  相似文献   

17.
A series of 1,3‐bis‐chalcone derivatives ( 3a‐i, 6a‐i and 8 ) were synthesized and evaluated antimicrobial, antibiofilm and carbonic anhydrase inhibition activities. In this evaluation, 6f was found to be the most active compound showing the same effect as the positive control against Bacillus subtilis and Streptococcus pyogenes in terms of antimicrobial activity. Biofilm structures formed by microorganisms were damaged by compounds at the minimum inhibitory concentration value between 0.5% and 97%.1,3‐bis‐chalcones ( 3a‐i, 6a‐i and 8 ) showed good inhibitory action against human (h) carbonic anhydrase (CA) isoforms I and II. hCA I and II were effectively inhibited by these compounds, with K i values in the range of 94.33 ± 13.26 to 787.38 ± 82.64 nM for hCA I, and of 100.37 ± 11.41 to 801.76 ± 91.11 nM for hCA II, respectively. In contrast, acetazolamide clinically used as CA inhibitor showed K i value of 1054.38 ± 207.33 nM against hCA I, and 983.78 ± 251.08 nM against hCA II, respectively.  相似文献   

18.
Benzothiazepine compounds have a wide range of applications such as antibacterial, antidepressants, anticonvulsants, antihypertensives, antibiotics, antifungal, hypnotic, enzyme inhibitors, antitumor, anticancer and anti‐HIV agents. In this study, the synthesis of novel tetralone‐based benzothiazepine derivatives ( 1–16 ) and their in vitro antibacterial activity and human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibitory effects were investigated. Both isoenzymes were purified by sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography from fresh human red blood cells. All compounds demonstrated the low nanomolar inhibitory effects on both isoenzymes using esterase activity. Benzothiazepine derivative 2 demonstrated the best hCA I inhibitory effect with Ki value of 18.19 nM. Also, benzothiazepine derivative 7 showed the best hCA II inhibitory effect with Ki value of 11.31 nM. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 19.92 nM against hCA I and 33.60 nM against hCA II, respectively.  相似文献   

19.
In this work, the inhibitory effect of some symmetric sulfamides derived from phenethylamines were determined against human carbonic anhydrase (hCA) I, and II isoenzymes, and compared with standard compound acetazolamide. IC50 values were obtained from the Enzyme activity (%)-[Symmetric sulfamides] graphs. Also, Ki values were calculated from the Lineweaver-Burk graphs. Some symmetric sulfamides compounds ( 11 – 18 ) demonstrated excellent inhibition effects against hCA I, and II isoenzymes. These compounds demonstrated effective inhibitory profiles with IC50 values in ranging from 21.66–28.88 nM against hCA I, 14.44–30.13 nM against hCA II. Among these compounds, the best Ki value for hCA I (Ki: 8.34±1.60 nM) and hCA II (Ki: 16.40±1.00 nM) is compound number 11 . Besides, the IC50 value of acetazolamide used as a standard was determined as hCA I, hCA II 57.75 nM, 49.50 nM, respectively. Moreover, in silico ADME-Tox study showed that all synthesized compounds ( 11 – 18 ) had good oral bioavailability in light of Jorgensen's rule of three, and of Lipinski's rule of five.  相似文献   

20.
A series of 4,5,6,7-tetrachloro-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 18) was synthesized by reaction of benzene sulfonamides incorporating primary amino moieties with 4,5,6,7-tetrachlorophthalic anhydride. These sulfonamides were assayed as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Some of these compounds showed very good in vitro human carbonic anhydrase (hCA) isoforms I, II and VII inhibitory properties, with affinities in the low nanomolar range. Inhibition activities against hCA I were in the range of 159–444 nM; against hCA II in the range of 2.4–4515 nM, and against hCA VII in the range of 1.3–469 nM. The structure–activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoform being established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号