首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery of tetraploidy in the red viscacha rat, Tympanoctomys barrerae (4 n  = 102) has emphasized the evolutionary role of genome duplication in mammals. The tetraploid status of this species is corroborated here by in situ PCR and Southern blot analysis of a single-copy gene. The species meiotic configuration strongly suggests a hybrid derivation. To investigate the origin of T. barrerae further, the recently described Pipanacoctomys aureus was studied. This 92-chromosome species also has a duplicated genome size, redundant gene copy number and diploid-like meiotic pairing, consistent with an event of allotetraploidization. Phylogenetic analysis of mitochondrial sequences indicates sister-group relationships between these two tetraploid rodents. The new karyotypic data and the phylogenetic relationships suggest the participation of the ancestral lineages of Octomys mimax in the genesis of P. aureus . The high overall DNA similarity and shared band homology revealed by genomic Southern hybridization as well as matching chromosome numbers between O. mimax and the descendant tetraploid species support the notion of introgressive hybridization between these taxa.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 443–451.  相似文献   

2.
We assessed genome size variation by flow cytometry within and among 31 species of nine families of African and South American hystricognath rodents. Interspecific variation was extensive and genome size was relatively high among the South American radiation whereas only moderate variation and smaller estimates of genome size were observed in the African counterparts. The largest genome size, indicating tetraploidy was recorded in the South American octodontid, Tympanoctomys barrerae (16.8 pg DNA). This quantum shift in DNA content represents a novel mechanism of genome evolution in mammals. As expected in polyploid organisms, varying nucleotypic effects were observed in the dimensions of the sperm cells and lymphocytes of T. barrerae. The role of control mechanisms that influence cell dimensions in polyploid organisms is discussed.  相似文献   

3.
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.  相似文献   

4.
The complete nucleotide sequence of the mt (mitochondrial) and cp (chloroplast) genomes of the unicellular green alga Ostreococcus tauri has been determined. The mt genome assembles as a circle of 44,237 bp and contains 65 genes. With an overall average length of only 42 bp for the intergenic regions, this is the most gene-dense mt genome of all Chlorophyta. Furthermore, it is characterized by a unique segmental duplication, encompassing 22 genes and covering 44% of the genome. Such a duplication has not been observed before in green algae, although it is also present in the mt genomes of higher plants. The quadripartite cp genome forms a circle of 71,666 bp, containing 86 genes divided over a larger and a smaller single-copy region, separated by 2 inverted repeat sequences. Based on genome size and number of genes, the Ostreococcus cp genome is the smallest known among the green algae. Phylogenetic analyses based on a concatenated alignment of cp, mt, and nuclear genes confirm the position of O. tauri within the Prasinophyceae, an early branch of the Chlorophyta.  相似文献   

5.
A goldfish (Carassius auratus auratus) bacterial artificial chromosome genomic library (BAC library) was constructed from one aquarium-bred male specimen (tetraploid, 4n=100, genome size=3.52 pg/cell). The library consists of 128,352 positive clones with an average insert size of 150.4 kb, covering the genome 11-fold. All clones were spotted onto nylon filters and thus are available for screening of genomic regions of interest, such as candidate genes, gene families, or large-sized syntenic DNA regions of cyprinid species. Preliminary screens with two genes were conducted with hybridizing probes to the genes RAG1 and lgi1. RAG1 is a single-copy gene in zebrafish and is duplicated in C. a. auratus. We found a very close correlation between the number of positive BAC clones and the expected library coverage. Two copies of lgi1 were found in zebrafish. We have detected four different copies in C. a. auratus, not in the expected abundance, which indicates some variation in the coverage of the BAC library. The preliminary screens indicate that many duplicated genes that resulted from the ancient fish-specific genome duplication persist in the tetraploid goldfish genome. Hence, the BAC library will provide a useful resource for the future work on comparative genomics, polyploidy, diploidization, and evolutionary genomics in fishes.  相似文献   

6.
7.

Background  

Gene duplication and gene loss during the evolution of eukaryotes have hindered attempts to estimate phylogenies and divergence times of species. Although current methods that identify clusters of orthologous genes in complete genomes have helped to investigate gene function and gene content, they have not been optimized for evolutionary sequence analyses requiring strict orthology and complete gene matrices. Here we adopt a relatively simple and fast genome comparison approach designed to assemble orthologs for evolutionary analysis. Our approach identifies single-copy genes representing only species divergences (panorthologs) in order to minimize potential errors caused by gene duplication. We apply this approach to complete sets of proteins from published eukaryote genomes specifically for phylogeny and time estimation.  相似文献   

8.
In the yeast or nematode, the proportion of essential genes in duplicates is lower than in singletons (single-copy genes), due to the functional redundancy. One may expect that it should be the same in the mouse genome. However, based on the publicly available mouse knockout data, it was observed that the proportion of essential genes in duplicates is similar to that in singletons. The most straightforward interpretation, as claimed in a recent study, is that duplicate genes may have a negligible role in the mouse genetic robustness. Here we show that in the current mouse knockout dataset, recently duplicated genes have been highly underrepresented, leading to an overestimation of the proportion of essential genes in duplicates. After estimating the duplication time of mouse duplication events, we have developed a simple bias-correcting procedure and shown that the bias-corrected proportion of essential genes in mouse duplicates is significantly lower than that in singletons.  相似文献   

9.
Desert rodents that consume halophytic plants must have adaptations for coping with the high salt content of the leaves. A kidney capable of excreting very concentrated urine is one method. Another is removal of the hypersaline epidermis by means of chisel-like incisors prior to ingestion of the leaves. Tympanoctomys barrerae has evolved a unique refinement of the latter adaptation. It possesses two bundles of stiffened hairs on either side of the palate just caudal to the incisors. The bundles vibrate against the lower incisors, removing the epidermis from the leaves. The efficiency of the operation is significantly greater than with the use of incisors alone. Such a device has not been described in any other mammal. The facial muscles associated with the lips, the cheek vibrissae, and the oral cavity are described in T. barrerae and the nonhalophilic octodontid Octomys mimax. M. buccinatorius pars intermaxillaris is the only muscle in direct contact with the bristle bundles. Other anatomical features found in T. barrerae that may be associated with this feeding device are: 1) a much enlarged and mobile lower labial pad operated by Mm. buccinatorius pars orbicularis oris, pars longitudinalis profunda, and mandibularis cranialis profunda; 2) two oral glands not described in other rodents; and 3) a shortened tongue. Although, taken as a whole, this epidermal stripping device is unique to T. barrerae, most of its features have evolved by modification of structures present in the facial region of more generalized rodents.  相似文献   

10.
11.
The relaxin (RLN) and insulin-like (INSL) gene family is a group of genes involved in a variety of physiological roles that includes bone formation, testicular descent, trophoblast development, and cell differentiation. This family appears to have expanded in vertebrates relative to non-vertebrate chordates, but the relative contribution of whole genome duplications (WGDs) and tandem duplications to the observed diversity of genes is still an open question. Results from our comparative analyses favor a model of divergence post vertebrate WGDs in which a single-copy progenitor found in the last common ancestor of vertebrates experienced two rounds of WGDs before the functional differentiation that gave rise to the RLN and INSL genes. One of the resulting paralogs was subsequently lost, resulting in three proto-RLN/INSL genes on three separate chromosomes. Subsequent rounds of tandem gene duplication and divergence originated the set of paralogs found on a given cluster in extant vertebrates. Our study supports the hypothesis that differentiation of the RLN and INSL genes took place independently in each RLN/INSL cluster after the two WGDs during the evolutionary history of vertebrates. In addition, we show that INSL4 represents a relatively old gene that has been apparently lost independently in all Euarchontoglires other than apes and Old World monkeys, and that RLN2 derives from an ape-specific duplication.  相似文献   

12.
The Saccharomyces cerevisiae genome sequence, augmented by new data on gene expression and function, continues to yield new findings about eukaryote genome evolution. Analysis of the duplicate gene pairs formed by whole-genome duplication indicates that selection for increased levels of gene expression was a significant factor determining which genes were retained as duplicates and which were returned to a single-copy state, possibly in addition to selection for novel gene functions. Proteome comparisons between worm and yeast show that genes for core metabolic processes are shared among eukaryotes and unchanging in function, while comparisons between different yeast species identify 'orphan' genes as the most rapidly evolving fraction of the proteome. Natural hybridisation among yeast species is frequent, but its long-term evolutionary significance is unknown.  相似文献   

13.
Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more accurate than alternative methods.  相似文献   

14.
Duplication of some floral regulatory genes has occurred repeatedly in angiosperms, whereas others are thought to be single-copy in most lineages. We selected three genes that interact in a pathway regulating floral development conserved among higher tricolpates (LFY/FLO, UFO/FIM, and AP3/DEF) and screened for copy number among families of Lamiales that are closely related to the model species Antirrhinum majus. We show that two of three genes have duplicated at least twice in the Lamiales. Phylogenetic analyses of paralogs suggest that an ancient whole genome duplication shared among many families of Lamiales occurred after the ancestor of these families diverged from the lineage leading to Veronicaceae (including the single-copy species A. majus). Duplication is consistent with previous patterns among angiosperm lineages for AP3/DEF, but this is the first report of functional duplicate copies of LFY/FLO outside of tetraploid species. We propose Lamiales taxa will be good models for understanding mechanisms of duplicate gene preservation and how floral regulatory genes may contribute to morphological diversity.  相似文献   

15.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

16.
17.
Aegilops caudata L. carries resistance genes against wheat diseases as well as genes of high crude protein and lysine contents, which can be useful for wheat improvement. An amphiploid of Triticum durum - Ac. caudata was synthesized and the hybridization of T. aestivum with the amphiploid Am 8 was carried out. Chromosome in situ hybridization was carried out for the PMC (pollen mother cell) of the synthesized amphiploid (AABBCC) and ( T. aestivum Beijing 837 × Am 8) F2 by using the pAeca 212 as a probe. The results showed that the 7 bivalents from C genome had hybridization signals in the amphiploid. The detection for F2(Beijing 837× Am 8) indicated that translocation, even (pure) home translocation, occurred in F2 generations spontaneously. The study showed the bright prospect in transferring alien resistance genes from C genome to wheat.  相似文献   

18.
The genome size, complexity, and ploidy of the dimorphic pathogenic fungus Histoplasma capsulatum was determined by using DNA renaturation kinetics, genomic reconstruction, and flow cytometry. Nuclear DNA was isolated from two strains, G186AS and Downs, and analyzed by renaturation kinetics and genomic reconstruction with three putative single-copy genes (calmodulin, α-tubulin, and β-tubulin). G186AS was found to have a genome of approximately 2.3 × 107 bp with less than 0.5% repetitive sequences. The Downs strain, however, was found to have a genome approximately 40% larger with more than 16 times more repetitive DNA. The Downs genome was determined to be 3.2 × 107 bp with approximately 8% repetitive DNA. To determine ploidy, the DNA mass per cell measured by flow cytometry was compared with the 1n genome estimate to yield a DNA index (DNA per cell/1n genome size). Strain G186AS was found to have a DNA index of 0.96, and Downs had a DNA index of 0.94, indicating that both strains are haploid. Genomic reconstruction and Southern blot data obtained with α- and β-tubulin probes indicated that some genetic duplication has occurred in the Downs strain, which may be aneuploid or partially diploid.  相似文献   

19.

Background  

Polyploidy (whole-genome duplication) is an important speciation mechanism, particularly in plants. Gene loss, silencing, and the formation of novel gene complexes are some of the consequences that the new polyploid genome may experience. Despite the recurrent nature of polyploidy, little is known about the genomic outcome of independent polyploidization events. Here, we analyze the fate of genes duplicated by polyploidy (homoeologs) in multiple individuals from ten natural populations of Tragopogon miscellus (Asteraceae), all of which formed independently from T. dubius and T. pratensis less than 80 years ago.  相似文献   

20.
In insects, the odorant receptor (Or) multigene family is an intermediate-sized family with genes present in all chromosomes, indicating that duplication followed by interchromosomal transposition played an important role in the early stages of the family evolution. Here, we have explored the occurrence of interchromosomal transpositions in more recent stages through the comparative analysis of a subset of Or genes in Drosophila, where the gene content of chromosomal arms is highly conserved. The studied subset consisted of 11 Or genes located on the left arm of chromosome 3 (Muller’s D element) in D. melanogaster. Our study focused on the number and chromosomal arm location of these members of the family across the 12 Drosophila species with complete genome sequences. In contrast to previous results from in situ hybridization comparative mapping that were mainly based on single-copy genes, our study, based on members of a multigene family of moderate size, revealed repeated interchromosomal transposition events and a complex history of some of the studied genes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号