首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined the antioxidant effect of histidine, a singlet oxygen (1O2) scavenger, on para-nonylphenol (an environmental estrogen-like chemical)-enhanced hydroxyl radical (·OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP+) in extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer’s solution (0.5 nmol/μl/min) was infused through a microdialysis probe to detect the generation of ·OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Introduction of para-nonylphenol (10 μM) significantly enhanced MPP+-induced ·OH generation. Histidine (25 mM) decreased the para-nonylphenol-enhanced ·OH formation. Although the level of MPP+-induced ·OH formation trapped as DHBA after para-nonylphenol treatment increased, para-nonylphenol failed to increase either the level of dopamine and DHBA formation in the reserpinized animals. These results indicate that para-nonylphenol and MPP+-enhanced ·OH generation was based on 1O2 production, and histidine may have a preventive effect on para-nonylphenol and MPP+-induced ·OH generation in rat striatum.  相似文献   

2.
Inhibition of mitochondrial energy production by MPP+ may be the key step in chemically-induced Parkinson's disease. Tetraphenylboron (TPB-) markedly enhances the effect of MPP+. Inhibition of respiration and uptake of MPP+ are accelerated, the former by up to two orders of magnitude. TPB increases the final concentration of MPP+ in the matrix by 2-3 fold, insufficient to explain the rapid inhibition of respiration. TPB- lowers the membrane surface potential by only about 20%, but increases the partitioning of MPP+ into organic solvent by one order of magnitude. TPB- also enhances the effect of MPP+ on inverted membranes, reducing the I50 by an order of magnitude. We suggest that TPB- acts by ion pairing with MPP+ to facilitate penetration into mitochondria as well as access to a hydrophobic inhibition site on NADH dehydrogenase.  相似文献   

3.
The present study examined the antioxidant effect of histidine, a singlet oxygen ((1)O(2)) scavenger, on para-nonylphenol (an environmental estrogen-like chemical)-enhanced hydroxyl radical (.OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP+) in extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of.OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Introduction of para-nonylphenol (10 microM) significantly enhanced MPP+ -induced.OH generation. Histidine (25 mM) decreased the para-nonylphenol-enhanced.OH formation. Although the level of MPP+ -induced.OH formation trapped as DHBA after para-nonylphenol treatment increased, para-nonylphenol failed to increase either the level of dopamine and DHBA formation in the reserpinized animals. These results indicate that para-nonylphenol and MPP+ -enhanced.OH generation was based on 1O(2) production, and histidine may have a preventive effect on para-nonylphenol and MPP+ -induced.OH generation in rat striatum.  相似文献   

4.
1-Methyl-4-phenylpyridinium ion (MPP(+)), an active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, induces cell death and inhibition of cell proliferation in various cells. However, the mechanism whereby MPP(+) inhibits cell proliferation is still unclear. In this study, we found that MPP(+) suppressed the proliferation with accumulation in G(1) phase without inducing cell death in p53-deficient MG63 osteosarcoma cells. MPP(+) induced hypophosphorylation of retinoblastoma protein and rapidly down-regulated the protein but not mRNA levels of cyclin D1 in MG63 cells. The down-regulation of cyclin D1 protein was suppressed by a proteasome inhibitor, MG132. The cyclin D1 down-regulation by MPP(+) was also observed in p53-positive PC12, HeLa S3, and HeLa rho(0) cells, which are a subclone of HeLa S3 lacking mitochondrial DNA. Moreover, MPP(+) dephosphorylated Akt in PC12 cells, which was rescued by the pretreatment with nerve growth factor. In addition, the pretreatment with nerve growth factor or lithium chloride, a glycogen synthase kinase-3beta inhibitor, suppressed the cyclin D1 down-regulation caused by MPP(+). Our results demonstrate that MPP(+) induces cell cycle arrest independently of its mitochondrial toxicity or the p53 status of the target cells, but rather through the proteasome- and phosphatidylinositol 3-Akt-glycogen synthase kinase-3beta-dependent cyclin D1 degradation.  相似文献   

5.
Acetylation and succinylation of cytochrome c decrease its rate of reaction with superoxide. The effect of succinylation is greater than that of acetylation. As predicted by the Brönsted-Debye-Hückel relationship, the effect of modification of cytochrome c is more pronounced at low ionic strength. Modification of cytochrome c causes a much greater decrease in its reaction with NADPH-cytochrome P-450 reductase, compared to its reaction with superoxide. This data forms the quantitative basis for the enhanced specificity of modified cytochrome c for superoxide detection previously described by other investigators. Additionally, a greatly simplified version of the trinitrobenzenesulfonic acid method for estimation of free amino groups is presented.  相似文献   

6.
Exposure of cerebellar granule cells (CGCs) to 1-methyl-4-phenylpyridinium (MPP+) results in apoptotic cell death, which is markedly attenuated by co-treatment of CGCs with the radical scavenger vitamin E. Analysis of free radical production and mitochondrial transmembrane potential (DeltaPsim), using specific fluorescent probes, showed that MPP+ mediates early radical oxygen species (ROS) production without a loss of DeltaPsim. Exposure to MPP+ also produces an early increase in Bad dephosphorylation and translocation of Bax to the mitochondria. These events are accompanied by cytochrome c release from mitochondria to cytosol, which is followed by caspase 3 activation. Exposure of the neurons to vitamin E maintains Bad phosphorylation and attenuates Bax translocation, inhibiting cytochrome c release and caspase activation. MPP+-mediated cytochrome c release is also prevented by allopurinol, suggesting the participation of xanthine oxidase in the process. Our results indicate that free radicals play an active role in the MPP+-induced early events that culminate with cell death.  相似文献   

7.
The effect of tetraphenylboron (TPB), an activator of a membrane transport of lipophilic cations, on the inhibition of mouse liver mitochondrial respiration induced by a neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+), and by some structurally related compounds was studied. Of the compounds tested, MPP+ and 4-phenylpyridine (4-PP) significantly inhibited the respiration in an ADP-activated oxidation of substrates (state 3). TPB, dose-dependently, shortened the lag time of MPP+-induced inhibition and thus lowered the concentrations of MPP+ for the inhibition. However, TPB, even at the high concentration (10 μM), did not significantly affect 4-PP-induced inhibition. Carbonyl-cyanide-m-chlorophenylhydrazone (CCCP) blocked the respiratory inhibition by MPP+, independent of K+ concentration in the medium, and valinomycin blocked the inhibition only in the medium containing high K+ concentration. Determination of the intramitochondrial MPP+ concentration revealed about 1000-fold concentrated MPP+ from that in the medium during the incubation with TPB, indicative of potentiation of MPP+ transport into mitochondria by TPB. This might account for the enhancement of respiratory inhibition by MPP+. In the case of 4-PP, it will penetrate the mitochondrial membrane and intrinsically inhibit the respiration, but cannot accumulate in mitochondria. The present results indicate that, although the inhibitory potency of MPP+ per se is similar to 4-PP, MPP+ will be highly concentrated within mitochondria by the membrane potential, as the drive force for its transport.  相似文献   

8.
Phenyl N-tert-butylnitrone (PBN) is widely used as a spin trapping agent, but is not useful detecting hydroxyl radicals because the resulting spin adduct is unstable. However, hydroxyl radicals could attack the phenyl ring to form stable phenolic products with no electron paramagnetic resonance signal, and this possibility was investigated in the present studies. When PBN was added to a Fenton reaction system composed of 25 mM H(2)O(2) and 0.1 mM FeSO(4), 4-hydroxyPBN was the primary product detected, and benzoic acid was a minor product. When the Fe(2+) concentration was increased to 1.0 mM, 4-hydroxyPBN concentrations increased dramatically, and smaller amounts of benzoic acid and 2-hydroxyPBN were also formed. Although PBN is extensively metabolized after administration to animals, its metabolites have not been identified. When PBN was incubated with rat liver microsomes and a reduced nicotinamide adenine dinculeotide phosphate (NADPH)-generating system, 4-hydroxyPBN was the only metabolite detected. When PBN was given to rats, both free and conjugated 4-hydroxyPBN were readily detected in liver extracts, bile, urine, and plasma. Because 4-hydroxyPBN is the major metabolite of PBN and circulates in body fluids, it may contribute to the pharmacological properties of PBN. But 4-hydroxyPBN formation cannot be used to demonstrate hydroxyl radical formation in vivo because of its enzymatic formation.  相似文献   

9.
NADPH:cytochrome c (cytochrome P-450) reductase (Fp) from hamster liver microsomes has been purified to near homogeneity using a simple and rapid method. Microsomes were treated with the detergent Chaps (3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid) in combination with 0.07% protamine sulfate and then centrifuged to pellet insoluble material. While over 60% of the total microsomal protein was solubilized, all Fp activity remained in the pellet. Fp was extracted from the Chaps-insoluble material using a combination of the detergents sodium cholate and Lubrol PX. This treatment resulted in a fivefold increase in Fp specific activity and allowed direct processing of the enriched Fp fraction by 2',5'-ADP agarose affinity chromatography. The purified Fp had a total flavin content of 23 nmol/mg protein (flavin adenine dinucleotide:flavin mononucleotide ratio = 1:1), a specific activity of 26,000 units/mg protein at 22 degrees C using cytochrome c as electron acceptor, and migrated as a single band on sodium-dodecyl sulfate-polyacrylamide gel electrophoresis with a relative molecular weight of 76,000. The purity, specific activity, and yield were nearly identical to results obtained when the flavoprotein was purified by conventional methods. This procedure eliminates the need for anion-exchange chromatography and allows for the rapid purification of large amounts of Fp suitable for use in studies concerning cytochrome P-450-mediated drug metabolism. Importantly, this method is equally effective when used to purify Fp from rat liver microsomes.  相似文献   

10.
The present study was examined whether diltiazem, a L-type Ca2+ channel antagonist, could suppresses 1 methyl-4-phenylpyridinium ion (MPP+)-induced dopamine (DA) in extracellular fluid of rat striatum. Ouabain (100 microM; 100 microM or 100 pmol/microl per min) significantly enhanced the level of DA by MPP+. However, in the presence of diltiazem (100 microM) significantly suppressed the level of DA release by ouabain and MPP+. These results suggest that diltiazem suppresses Ca2+ -dependent release of DA by ouabain-induced Ca2+ overload.  相似文献   

11.
A single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice caused 75-87% depletion of heart norepinephrine (NE) concentration 24 hrs later. MPP+ (1-methyl-4-phenylpyridinium) caused similar depletion of heart NE. The effect of MPTP was not blocked by pretreatment with deprenyl, an inhibitor of type B monoamine oxidase (MAO-B). Also, deprenyl pretreatment did not prevent the depletion of heart NE after 4 daily doses of MPTP, even though in the same mice deprenyl pretreatment did prevent depletion of dopamine in the striatum and of NE in the frontal cortex. Apparently the depletion of heart NE by MPTP, unlike the depletion of brain catecholamines, does not require that MPTP be metabolized by MAO-B and can be mimicked by systemic injection of MPP+.  相似文献   

12.
Ultraviolet circular dichroism spectrum of purified NADPH cytochrome P-450 reductase was characterized by two negative bands centered at 208 and 222 nm. The approximation of the alpha-helical content from the value of the mean residue ellipticity at 222 nm indicated 28% of alpha-helical structures. Heat inactivation of the enzyme was associated to a drastic change in the secondary structure of the protein. Membrane reconstitution experiments by inclusion of the enzyme into liposomes revealed that the conformation of NADPH cytochrome P-450 reductase was sensitive to its phospholipid environment. Egg lecithin as well as synthetic phosphatidylcholines, at the optimal phospholipid-enzyme molar ratio 200, was able to increase up to 37% the mean residue ellipticity at 222 nm. Addition of phosphatidylserine or phosphatidylethanolamine produced no effect. Non-ionic detergent such as Emulgen 913 weakly enhanced the mean residue ellipticity.  相似文献   

13.
The uptake and accumulation of N-methyl-4-phenylpyridinium ion (MPP+), a neurotoxin produced by oxidation of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), into PC12h pheochromocytoma cells were examined. Concentration gradients of MPP+ were established at its low concentrations of 10 to 100 nM. Uptake of MPP+ into PC12h cells was mediated by saturable, carrier mediated transport systems with two different kinetic properties; a high-affinity and low-capacity system and a low-affinity and high-capacity system. The apparent Km values of these two systems were obtained to be 254.4 ± 96.5 nM and 23.1 ± 6.9 μM, respectively, and the maximal uptake velocity was obtained to be 8.47 ± 1.72 and 28.6 ± 5.2 pmol/min/mg protein, respectively. The uptake by a high-affinity system was mediated by a carrier system common to dopamine and noradrenalin and MPTP itself proved to be taken up by this system, which was further confirmed by the inhibition of the MPP+ uptake by nomifensine and mazindol. The uptake was inhibited by metabolic inhibitors, such as carbonyl cyanide m-chlorophenyl hydrazone, sodium cyanide and 2,4-dinitrophenol, and the uptake was inhibited by ouabain and nigercin. By subcellular fractionation, MPP+ taken up was found to be localized mainly in cytosol fraction, but a definite amount of MPP+ was found also in mitochondrial fraction.  相似文献   

14.
The administration of 1-methyl-4-phenylpyridinium (MPP+) to cultures of adrenal medullary chromaffin cells resulted in time and concentration-dependent increases in the cellular content of MPP+. Co-incubation of cells with MPP+, in the presence of desmethylimipramine (DMI), reduced but did not prevent the accumulation of the pyridinium in these cells. Similarly, DMI and MPP+ co-administration reduced but did not prevent the neurotoxicant-induced release of a cytosolic marker, lactate dehydrogenase, into the media. Molecular orbital calculations reveal that the positive charge of MPP+ is highly delocalized throughout the pyridinium ring and consequently MPP+ may be able to diffuse down concentration or charge gradients. Thus, these data provide a basis for the entry of MPP+ into cells and subcellular organelles that lack a catecholamine transporter, e.g. mitochondria.  相似文献   

15.
Effects of 1-methyl-4-phenylpyridinium ion (MPP+) on the activities of NAD+- or NADP+-linked dehydrogenases in the TCA cycle were studied using mitochondria prepared from mouse brains. Activities of NAD+- and NADP+-linked isocitrate dehydrogenases, NADH- and NADPH-linked glutamate dehydrogenases, and malate dehydrogenase were little affected by 2 mM of MPP+. However, alpha-ketoglutarate dehydrogenase activity was significantly inhibited by MPP+. Kinetic analysis revealed a competitive type of inhibition. Inhibition of alpha-ketoglutarate dehydrogenase may be one of the important mechanisms of MPP+-induced inhibition of mitochondrial respiration, and of neuronal degeneration.  相似文献   

16.
M Naoi  T Takahashi  T Nagatsu 《Life sciences》1988,43(18):1485-1491
1-Methyl-4-phenylpyridinium ion (MPP+), a metabolite of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, was found to reduce dopamine (DA) level and the activity of enzymes related to its metabolism in clonal rat pheochromocytoma PC12h cells. After 6 days' culture in the presence of 1 mM and 100 microM MPP+, DA content in PC12h cells was reduced markedly, but with MPP+ at concentrations lower than 10 microM, DA levels in the cells did not change. The amounts of 3,4-dihydrophenylacetic acid (DOPAC), a metabolite of DA were reduced markedly in culture medium and in PC12h cells cultured with MPP+ at concentrations higher than 1 microM. MPP+ was found to reduce the enzyme activity of tyrosine hydroxylase (TH), monoamine oxidase (MAO) and aromatic L-aminoacid decarboxylase (AADC). In the presence of MPP+ at concentrations higher than 10 microM, reduction of TH activity in the cells was more pronounced than reduction of cell protein or of the activity of a non-specific enzyme, beta-galactosidase. With 1 mM and 100 microM MPP+, MAO activity was reduced to about 30% of that in control cells. Reduction was observed with MPP+ at concentrations higher than 1 microM. AADC was the most sensitive to MPP+ and its activity was reduced markedly in the cells cultured with 100 nM MPP+. These results indicate that MPP+ inhibits not only the biosynthesis of catecholamines, but also the enzyme participating in their catabolism in cells, and may thus perturb catecholamine levels in the brain.  相似文献   

17.
The reduction kinetics of NADPH:cytochrome P-450 reductase have been investigated by the laser flash photolysis technique, using the semiquinone of 5-deazariboflavin (5-dRfH.) as the reductant. Transients observed at 470 nm at neutral pH indicated that the oxidized reductase was reduced via second-order kinetics with a rate constant of 6.8 X 10(7) M-1 s-1. The second-order rate constant corresponding to the formation of the protein-bound semiquinone (measured at 585 nm) was essentially the same as that obtained at 470 nm (7.1 X 10(7) M-1 s-1). Subsequent to this rapid formation of protein-bound semiquinone, a partial exponential decay was observed at 585 nm. The rate of this decay remained invariant with protein concentration between pH 5.0 and 7.0, and a first-order rate constant of 70 s-1 was obtained for this process. This is assigned to intramolecular electron transfer from FADH. to FMN. Prior reduction of the enzyme to the one-electron level led to a decrease in both the second-order rate constant for reduction (2 X 10(7) M-1 s-1) and the first-order intraflavin electron transfer rate constant (15 s-1). The protein-bound FAD moiety of FMN-depleted reductase was reduced by 5-dRfH. with a second-order rate constant that was identical with that observed with the native enzyme (6.9 X 10(7) M-1 s-1). However, with this species no significant decay of the FAD semiquinone was observed at 585 nm following its rapid formation, consistent with the above assignment of this kinetic process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.  相似文献   

19.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine has been reported to cause parkinsonism via its neurotoxic form, 1-methyl-4-phenylpyridinium ion (MPP+), which inhibits complex I of the mitochondrial respiratory chain. Its parkinsonism-causing mechanisms attract a great deal of interest as a model of the disease. Recently, we reported that MPP+ strongly decreases the amount of mtDNA independent of the inhibition of complex I. Maintenance of a proper amount of mtDNA is essential for the normal function of mitochondria as exemplified in many mitochondrial diseases. The most characteristic feature in vertebral mtDNA replication is that H-strand synthesis proceeds displacing the parental H-strand as a long single strand. It forms the D-loop, a triplex replication intermediate composed of the parental L-strand, nascent H-strand and displaced H-strand. Here we show that MPP+ does not inhibit DNA synthesis by DNA polymerase gamma, but rather releases the nascent H-strands from mtDNA both in organello and in vitro. This indicates that MPP+ directly destabilizes the D-loop structure, thereby inhibiting replication. This study raises a new mechanism, i.e. destabilization of replication intermediates, for depletion of mtDNA.  相似文献   

20.
The membrane-bound flavoprotein NADPH:cytochrome P-450 (cytochrome c) reductase, that functions in electron transfer to cytochrome P-450 mono-oxygenases, was purified from a cell suspension culture of the higher plant Catheranthus roseus . Anti-serum raised against the purified protein was found to inhibit NADPH:cytochrome c reductase activity as well as the activities of the cytochrome P-450 enzymes geraniol 10-hydroxylase and trans -cinnamate 4-hydroxylase, which are involved in alkaloid biosynthesis and phenylpropanoid biosynthesis, respectively. Immunoscreening of a C. roseus cDNA expression library resulted in the isolation of a partial NADPH: cytochrome P-450 reductase cDNA clone, which was identified on the basis of sequence homology with NADPH:cytochrome P-450 reductases from yeast and animal species. The identity of the cDNA was confirmed by expression in Escherichia coli as a functional protein capable of NADPH-dependent reduction of cytochrome c and neotetrazolium, two in vitro substrates for the reductase. The N-terminal sequence of the reductase, which was not present in the cDNA clone, was determined from a genomic NADPH: cytochrome P-450 reductase clone. It was demonstrated that the reductase probably is encoded by a single copy gene. A sequence comparison of this plant NADPH:cytochrome P-450 reductase with the corresponding enzymes from yeast and animal species showed that functional domains involved in binding of the cofactors FMN, FAD and NADPH are highly conserved between all kingdoms. In C. roseus cell cultures a rapid increase of the reductase steady state mRNA level was observed after the addition of fungal elicitor preparations that are known to induce cytochrome P-450-dependent biosynthetic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号