首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Plasmid primes carrying various fragments of Pseudomonas putida chromosome have been derived from pMO22, a derivative of R91-5 loaded with Tn 501 . These prime plasmids transfer efficiently to P. aeruginosa where they effectively complement various auxotrophic markers. Proof of prime plasmid formation has been provided by the high-frequency transfer of plasmid and chromosomal markers, the unselected cotransfer of either plasmid or chromosomal markers into P. aeruginosa and by transformation of both plasmid and chromosomal markers using prime plasmid DNA. Such prime plasmids have been used to map the location of new markers on the P. putida chromosome.  相似文献   

2.
3.
Conjugal transfer of the small plasmid pUB110 between Bacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 degrees C and 22-23 degrees C.  相似文献   

4.
The broad host-range plasmid pBS222 is compatible with broad host-range plasmids of all known incompatibility groups and codes for tetracycline resistance. pBS222 is efficiently mobilized by Inc P-1 plasmid RP4 and is also capable of conjugal transfer with low efficiency to different gramnegative microorganisms. The size of the plasmid (17.2 Kb) has been determined and its physical map has been constructed. The plasmid harbours the unique sites for restriction endonucleases BglII, HindIII, HpaI, KpnI, SmaI and XbaI cleawage. The plasmid derivatives pBS352-pBS355 have been obtained that carry kan- and cam-determinants in addition to tet-gene. Plasmid pBS355 has been used to clone EcoRI-fragments of phage lambda DNA. The plasmid pBS222 regions essential for replication and maintenance have been localized by DNA hybridization analysis of its mini-derivatives pBS356 and 357. pBS222 is a convenient model for investigations of the plasmid replication and maintenance mechanisms in different bacterial hosts as well as for the construction of broad host-range vectors.  相似文献   

5.
杆状病毒双基因表达载体转移质粒的构建   总被引:1,自引:0,他引:1  
苏德明 《病毒学报》1992,8(3):283-286
  相似文献   

6.
Plasmid propagation in populations of unstable, binary fission recombinant organisms has been studied using a segregated, population balance mathematical model. Segregated models have the advantage of direct incorporation of basic information on mechanisms and kinetics of plasmid replication and segregation at the single-cell level. The distribution of cellular plasmid content and specific rates of plasmid gene expression have been obtained for several single-cell models of plasmid replication, partition, and gene expression. Plasmid replication kinetics during cell growth significantly influence the plasmid content distribution. In the case of transient growth of plasmid-containing and plasmid-free cells in partially selective medium, the degree of selection required for stable maintenance of plasmid-containing cells has been determined. Guidelines are presented for applicability of simpler, nonsegregated models and for evaluation of the parameters in these models based on single-cell mechanisms and associated parameters.  相似文献   

7.
Conjugal transfer of the small plasmid pUB110 betweenBacillus subtilis strains was studied under conditions of microcosms with sterile and nonsterile soil. Plasmid transfer proved to be possible after soil inoculation with vegetative partner cells or with their spores. Plasmid transfer occurred at temperatures of 30 and 22–23°C.  相似文献   

8.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

9.
Plasmid aggregate (R387, R64) was constructed in E. coli K12 strain. Plasmid R387 Inc K was stimulated to conjugational transfer by plasmid R64 Inc I. This stimulation was caused neither by recombination between both plasmids nor by trans-complementation of R387 conjugational systems by gene(s) product(s) of R64 plasmid. The observed phenomenon resembled rather mobilization of nonconjugative plasmids by conjugative ones. As in mobilization, the observed increase in R387 transfer frequency could take place only when both interacting plasmids were present in donor cells. Moreover, the entry exclusion system functioning in recipient cells, toward stimulating R64 plasmid affected strongly the conjugational transfer of stimulated R387 plasmid. Analogous phenomenon was observed during mobilization of nonconjugative plasmids by conjugative ones.  相似文献   

10.
Insertion of the mercury resistance transposon Tn501 into broad-host-range plasmid RP1 greatly enhanced the ability of this plasmid to promote chromosome transfer in the photosynthetic bacterium Rhodopseudomonas sphaeroides. Compared with the wild-type RP1, which produced less than 10(-8) recombinants per donor cell, RP1::Tn501 produced between 10(-3) and 10(-7) recombinants per donor cell depending upon the marker selected. Plasmid RP1::Tn501 promoted polarized transfer of the chromosome from one or perhaps two origins on the chromosome, giving rise to two linkage groups. All of the biosynthetic and antibiotic resistance genes that have been mapped, including those involved in photosynthesis, occur on one or another of these linkage groups.  相似文献   

11.
The conjugative plasmid pIJ101 and its conjugative nondeletion derivatives pIJ303 and pIJ211 were tested for their transferability between strains of Streptomyces on laboratory media and in the soil environment. Their roles in the mobilization of the cloning vector plasmid pIJ702, a nonconjugative deletion derivative of pIJ101, were also examined. Biparental and triparental crosses were performed on agar slants and in sterile soil between the plasmid donor Streptomyces lividans and several recipient Streptomyces strains previously isolated from soil. Conjugative plasmids were transferred to seven recipients in slant crosses and to three recipients in soil. Plasmids isolated from recipients showed restriction fragment patterns identical to that of the original plasmid in S. lividans. Plasmid pIJ303 was transferred less frequently in soil than on slants, and the frequency of transfer was higher at 30 degrees C than at the other temperatures examined. Transconjugant Streptomyces strains differed in their ability to maintain pIJ303. The nonconjugative plasmid pIJ702 was mobilized on agar slants into S. coelicolor 2708, which already contains a self-transmissible plasmid. Plasmid pIJ702 was also mobilized into S. flavovirens, Streptomyces sp. strain 87A, and S. parvulus on slants and in sterile soil after triparental crosses with two donors, one containing pIJ702 and the other containing either pIJ101 or pIJ211. The presence of a conjugative plasmid donor was required for the transfer of pIJ702 to S. parvulus 1234, S. flavovirens 28, and Streptomyces sp. strain 87A. Plasmid pIJ702 was always transferred in its normal, autonomous form. Chromosomal recombination also occurred in transconjugants after the transfer of pIJ702. This is the first report of gene transfer between Streptomyces strains in soil.  相似文献   

12.
Plasmid transfer of broad-host-range plasmid RP1 from marine Vibrio sp. strain S14 to marine strain SW5 under optimum conditions on the surface of nutrient plates was improved 2 orders of magnitude by using the plasmid transfer process to select an SW5 recipient more efficient than the wild type in receiving and/or maintaining the plasmid. This recipient strain, SW5H, was used to form biofilms under flow conditions on the surfaces of glass beads in reactors. The S142(RP1) donor strain was introduced to the reactors after either 48 or 170 h of biofilm formation, and production of transconjugants in the aqueous phases and biofilms without selection pressure was assessed. Plasmid transfer to the recipient cells in the biofilm was detected for biofilms formed for 170 h but not in those formed for 48 h. The plasmid transfer frequency was significantly higher (P < 0.05) among cells attached to the bead surfaces in the biofilm than among cells in the aqueous phase.  相似文献   

13.
Invasive intracellular bacteria are able to transfer eukaryotic expression plasmids into mammalian host cells in vitro and in vivo. This can be used to induce immune responses toward protein antigens encoded by the plasmid or to complement genetic defects. Plasmid transfer takes place when the recombinant bacterium dies within the host cell, either due to metabolic attenuation or induction of autolysis. Alternatively, antibiotics can be used and spontaneous transfer has also been observed, indicating that this phenomenon might also occur under physiological conditions. Plasmid transfer has been reported for Shigella flexneri, Salmonella typhimurium and S. typhi, Listeria monocytogenes and recombinant Escherichia coli, but other invasive bacteria should also share this property. In vivo attempts were mainly directed toward vaccination using shigella and salmonella as carrier. So far a wide variety of antigens have been used succesfully in mice. Often this type of immunization was superior over direct application of antigen or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. Characterization of the host cells revealed that macrophages and dendritic cells might be responsible for immune stimulation by either expressing the antigen or cross-presenting the antigen after uptake of apoptotic antigen expressing cells.  相似文献   

14.
The restriction map of Yersinia pestis pesticinogenicity plasmid pYP1 has been constructed with the use of 18 restriction endonucleases. Plasmid dimensions (6.3 Md) have been specified, the genes for pesticin synthesis, for pesticin immunity protein, fibrinolysin and plasmocoagulase have been localized by molecular cloning of single plasmid DNA fragments in vector plasmid pBR322.  相似文献   

15.
We have constructed Escherichia coli-Streptomyces shuttle plasmids which are capable of conjugal transfer from E. coli to Streptomyces spp. These plasmids contained the pBR322 and pIJ101 origins of replication and the RK2 (IncP) origin of transfer. The transfer of plasmid was specifically dependent the presence of a 760-base-pair, cis-acting, oriT-containing fragment and on RP4 (IncP) functions supplied in trans. Conditions of mating and selection of exconjugants were analyzed with Streptomyces lividans as recipient. Plasmid transfer to other Streptomyces species was also demonstrated.  相似文献   

16.
AIMS: To investigate the effect of flow rate and inoculation order on plasmid transfer frequency between bacteria in a model rhizosphere system. METHODS AND RESULTS: A physical model system was constructed and used to demonstrate that although flow rate did affect plasmid transfer frequency for an introduced strain, the flow rates necessary for a significant effect on an established population were much higher than typical water flow rates found through soil. Plasmid transfer frequency was highly sensitive to strain inoculation order. CONCLUSION: Flow rate may not have a significant effect on plasmid transfer frequency between established bacterial populations in the rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the current debate over the release and spread of genetically modified organisms into the environment. It also demonstrates that model controlled systems may be used to rapidly obtain initial data about the potential behaviour of microorganisms, prior to more costly and lengthy glasshouse and field trials.  相似文献   

17.
Plasmid transfer between Bacillus thuringiensis subsp. kurstaki HD1 and B. thuringiensis subsp. tenebrionis donor strains and a streptomycin-resistant B. thuringiensis subsp. kurstaki recipient was studied under environmentally relevant laboratory conditions in vitro, in soil, and in insects. Plasmid transfer was detected in vitro at temperatures of 5 to 37 degrees C, at pH 5.9 to 9.0, and at water activities of 0.965 to 0.995, and the highest transfer ratios (up to 10(-1) transconjugant/donor) were detected within 4 h. In contrast, no plasmid transfer was detected in nonsterile soil, and rapid formation of spores by the introduced strains probably contributed most to the lack of plasmid transfer observed. When a B. thuringiensis subsp. kurstaki strain was used as the donor strain, plasmid transfer was detected in killed susceptible lepidopteran insect (Lacanobia oleracea) larvae but not in the nonsusceptible coleopteran insect Phaedon chocleriae. When a B. thuringiensis subsp. tenerbrionis strain was used as the donor strain, no plasmid transfer was detected in either of these insects even when they were killed. These results show that in larger susceptible lepidopteran insects there is a greater opportunity for growth of B. thuringiensis strains, and this finding, combined with decreased competition due to a low initial background bacterial population, can provide suitable conditions for efficient plasmid transfer in the environment.  相似文献   

18.
Lithium treated cells of the yeastPachysolen tannophilus have been transformed with a plasmid carrying the gene encoding for the hexokinase PII enzyme fromSaccharomyces cerevisiae. The gene was expressed and the presence of the enzyme within the cell was demonstrated by DEAE-cellulose chromatography of cell-free extracts. Plasmid DNA from the transformants was used to transformE. coli HB101. Plasmid DNA from the bacterial transformants had the same mobility on an agarose gel as the original plasmid.  相似文献   

19.
Plasmid selection and strand replacement synthesis in donor cells during conjugative transfer was examined by a procedure involving electroporation of test plasmid DNA, containing a base pair mismatch, into donor cells prior to mating. Multiple copies of the plasmid were transferred from a donor cell that allowed vegetative replication of the plasmid. Under conditions non-permissive for vegetative replication, there were further rounds of transfer after a lag period. Strand replacement in the donor did not depend solely on the initiation mechanism for vegetative replication, indicating a conjugation-specific mechanism was also available. The lag period between first and second rounds of transfer argues against the transfer of multiple copies into recipients by the spooling of copies generated on a master molecule by rolling-circle replication.  相似文献   

20.
Plasmid R68.45 was transferred from Pseudomonas aeruginosa PAO25 to the photosynthetic species Rhodopseudomonas gelatinosa and Rhodopseudomonas sphaeroides by selection for resistance to antibiotics. R. sphaeroides strains carrying the plasmid could transfer the plasmid and also chromosomal genes to other strains of R. sphaeroides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号