首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Biotransformation of benzaldehyde and pyruvate to (R)-phenylacetyl carbinol bySaccharomyces cerevisiae was investigated in two-phase aqueous-organic reaction media. With hexane as organic solvent, maximum biotransformation activity was observed with a moisture content of 10%. Of the organic solvents tested, highest biotransformation activities were observed with hexane and hexadecane, and lowest activities occurred with chloroform and toluene. Biocatalyst samples from biphasic media containing hexane, decane and toluene manifested no apparent cell structural damage when examined using scanning electron microscopy. In contrast, cellular biocatalyst recovered from two-phase systems containing chloroform, butylacetate and ethylacetate exhibited damage in the form of cell puncturing after different incubation periods. Phospholipids were detected in reaction media from biocatalytic systems which exhibited cell damage in electron micrographs. Phospholipid release was much lower in the two-phase systems containing toluene or hexane or in 100% aqueous biocatalytic system.  相似文献   

2.
The low substrate specificity of alcohol oxidase from Pichia pastoris makes this enzyme system of potential biotechnological interest. Whole cells of Pichia pastoris are able to oxidize benzyl alcohol to benzaldehyde in aqueous reaction media. The low water solubility of the reactant and product of this bioconversion, combined with the ability of both to strongly inhibit the reaction, favor the use of nonaqueous reaction fluids. Purified alcohol oxidase was shown to function in a number of 2-phase reaction systems of varied aqueous to organic phase ratios (0.01-0.05 v/v). The apparent V(max) and K(m) were 5.26 g/Lh and 7.41 g/L respectively, for the oxidation of benzyl alcohol to benzaldehyde in hexane containing 3% aqueous phase. The volume of the aqueous phase had a strong effect on the reaction, with an aqueous: organic ratio of 3-5% found to be optimum. The enzyme could be firmly immobilized on DEAE-Biogel (Biorad) to enhance stability and biocatalyst recovery.  相似文献   

3.
Wu J  Li MH  Lin JP  Wei DZ 《Current microbiology》2011,62(4):1123-1127
The Gluconobacter oxydans M5 with disruption of the pyrroloquinoline quinine-dependent membrane-bound aldehyde dehydrogenase (ALDH) was used for the oxidation of benzyl alcohol. The selectivity toward benzaldehyde showed an obvious increase for the engineered strain, which reached the 67.3%, while the wild strain had only 2.8%. Meantime, the aqueous/isooctane (1:1) biphasic system was used for the further improvement of selectivity. By these methods, nearly 100% selectivity and conversion rate could be obtained within 1 h at the optimum initial benzyl alcohol concentration of 5.0 g/l.  相似文献   

4.
Summary Biotransformation of benzaldehyde to benzyl alcohol bySaccharomyces cerevisiae immobilized in different support matrices was investigated. Polymers with intrinsic hydrophobic and/or hydrophilic nature as well as mixed hydrophobic and hydrophilic supports were examined both in aqueous and bisphasic aqueous-organic systems. The hydrophobic support material ENTP-2000 or mixed silicone:alginate (50-2550-75) proved to be most suitable not only for nonconventional media but also for conventional aqueous media for production of benzyl alcohol. With ENTP-2000, catalytic activity and maximum yield were 159 mol h–1 g–1 dry weight catalyst and 0.89 mM, respectively, in hexane containing 2% moisture. Corresponding values in aqueous media were 246 mol h–1 g–1 dry weight catalyst and 1.53 mM. With 5050 silicone:alginate, catalytic activity and maximum yield were 177 mol h–1 g–1 dry weight catalyst and 1.18 mM, respectively, in hexane containing 2% moisture. Corresponding values in aqueous media were 192 mol h–1 g–1 dry weight catalyst and 0.8 mM.  相似文献   

5.
The capacities of yeast wild-type and mutants strains known to lack specific ADH isoenzymes to produce L-phenylacetyl carbinol (PAC) and benzyl alcohol in biotransformation trials were also investigated. Pyruvate decarboxylase activity, responsible for PAC formation and ADH activity, which can participate in reduction of benzaldehyde to benzyl alcohol, was also determined in each strain. In addition, the capacity of each strain to produce ethanol was investigated. Mutant strains lacking all of the isoenzymes, ADH-I, ADH-II, and ADH-III, still exhibited some ADH activity and were capable of production of benzyl alcohol and ethanol.  相似文献   

6.
Lipases of a newly isolated Pseduomonas aeruginosa MTCC 5113 were assessed for transesterification of benzyl alcohol and vinyl acetate to produce the flavoring agent benzyl acetate. Crude lipase preparations that minimized the cost of the biocatalyst, achieved benzyl alcohol conversion of 89% within 3h at 30 degrees C. In contrast, purified and expensive commercially available lipases of Candida antarctica and porcine pancreas achieved much lower conversions at 80% and 15%, respectively. A well-mixed ( approximately 800 rev.min(-1)) batch reactor having the aqueous phase finely dispersed in heptane was used in these studies. Benzyl alcohol conversion was maximal when the enzyme-containing aqueous phase constituted about 50% of the total reactor volume. Use of solvents such as hexane, benzene, toluene and dimethyl sulfoxide reduced conversion compared with the use of heptane.  相似文献   

7.
Biocatalysis of lipoxygenase in selected organic solvent media   总被引:3,自引:0,他引:3  
The biocatalysis of purified soybean lipoxygenase (LOX) (EC 1.13.11.12), using linoleic acid as a substrate model, was investigated in selected organic solvent media, including chloroform, dichloromethane, hexane, iso-octane, octane and toluene. The results indicated that there was a 2.6-fold increase in LOX activity in the monophasic iso-octane medium compared to that obtained in the aqueous medium. The results also showed that there was an increase of 2.2- and 1.8-fold in LOX activity in the monophasic reaction media of octane and hexane, respectively. However, an inhibitory effect on enzyme activity was observed when the monophasic reaction media of toluene, chloroform and dichloromethane were used. In addition, the results showed that the optimum concentration of octane and iso-octane in the biphasic medium containing the organic solvent and Tris–HCl buffer solution, was determined to be 3.5% and 4%, respectively, for LOX activity. Moreover, the biocatalysis of LOX in a ternary micellar system, containing either 3.5% octane or 4% iso-octane, Tris–HCl buffer solution and an emulsifier, resulted in an overall increase in enzyme activity. The Km and Vmax values, substrate specificity, optimum protein concentration, optimum reaction temperature as well as the enzymatically catalyzed end-products were investigated for LOX biocatalysis in both ternary micellar systems.  相似文献   

8.
Using free and immobilized whole cells of Pichia pastoris, the biocatalytic oxidation of benzyl alcohol was investigated in different two-phase systems. This reaction was strongly influenced by both the substrate and product inhibitions, and the production rate of benzaldehyde in the aqueous system became maximum at the initial substrate concentration of ca. 29 g/L with the aldehyde formation less than 4 to 5 g/L even after a longer reaction period. The reaction rates in the two-liquid phase systems were predominantly determined by the partitioning behaviors of the substrate and product between the two phases rather than by enzyme deactivation by the organic solvents. In the two-liquid phase systems, consequently, the organic solvent acted as a reservior to reduce these inhibitory effects, and it was essential to select the organic solvent providing the optimal partitioning of the substrate into the aqueous phase as well as the preferential extraction of the product into the organic phase. The whole cells immobilized in a mixed matrix composed of silicone polymer [>50% (v/v)] and Ca alginate gel (<50%) worked well in the xylene and decane media, providing comparable activities with the free cells. The production rate of aldehyde was also influenced by the solute partitioning into the hydrophilic alginate phase where the cells existed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
Asymmetric synthesis of an unnatural amino acid was demonstrated by ω-transaminase from Vibrio fluvialis JS17. l-2-Aminobutyric acid was synthesized from 2-oxobutyric acid and benzylamine with an enantiomeric excess higher than 99%. The reaction showed severe product inhibition by benzaldehyde, which was overcome by employing a biphasic reaction system to remove the inhibitory product from the aqueous phase. In a typical biphasic reaction (50 mM 2-oxobutyric acid, 70 mM benzylamine and 2.64 U/ml purified enzyme) using hexane as an extractant, conversion of 2-oxobutyric acid reached 96% in 5 h whereas only 39% conversion was obtained without the product extraction.  相似文献   

10.
Batch culture of Acinetobacter calcoaceticus in L-mandelate- or phenylglyoxylate-salts medium showed an unusual non-exponential pattern unless the inoculum had been grown on benzyl alcohol. There were transient accumulations of benzaldehyde and benzyl alcohol caused by the limitation of L-mandelate oxidation by low activities of benzaldehyde dehydrogenase and the diversion of reducing power to the formation of benzyl alcohol. In vivo enzymic activities were estimated from patterns of substrate utilization in batch cultures containing pairs of substrates. When bacteria previously grown in L-mandelate-salts medium were inoculated into media containing L-mandelate and a second carbon source, metabolism of L-mandelate was arithmetical in the presence of benzoate, catechol or succinate, but accelerated on exhaustion of the second substrate. This indicated repression of the enzymes involved in L-mandelate oxidation. Inoculation of bacteria grown in benzoate-salts medium into medium containing L-mandelate and benzoate gave diauxie with initial utilization of benzoate. Similar experiments showed that benzoate oxidation was not repressed by catechol and only partially repressed by succinate. Measurement of L-mandelate dehydrogenase, phenylglyoxylate carboxy-lyase and benzaldehyde dehydrogenase I in bacterial extracts showed no evidence for feedback inhibition by intermediates of the pathway. The rates of L-mandelate and benzoate utilization by bacterial suspensions were inhibited by succinate and catechol but not by other intermediates of the pathway.  相似文献   

11.
Immobilized baker's yeast entrapped in calcium alginate beads efficiently reduces N-benzylidinemethylamine to N-methylbenzylamine in hexane at 37°C and tetrahydrofuran (THF) at 30°C in the presence of 18-crown-6, while in the presence of water as cosolvent and glucose as an additive N-benzylidinemethylamine undergoes decomposition. Benzaldoxime in a hexane–water (1:9) solvent system containing glucose as an additive is reduced to N-benzylhydroxylamine. On using an ethanol–water (1:1) solvent system, benzaldoxime is converted to benzyl alcohol and in hexane, benzene, THF, hexane–water (1:1) or acetonitrile–water (1:1) solvent systems, or using dried baker's yeast in different solvent systems, transformation of benzaldoxime does not occur.  相似文献   

12.
Sixteen organic co-solvents were screened for stereoselective reduction of 1-acetonapthone in aqueous media by whole cells of Geotrichum candidum. Benzyl alcohol was found to be a good co-solvent as it afforded a high coversion and reduced deactivation of the cells. Half-lives of the wet and lyophilized whole cell biocatalysts in pure benzyl alcohol were 23.07 and 11.21 hours, respectively. The initial reaction rates at 30°C were 13.1 and 11.0μmol/min, respectively, for the wet and lyophilized cells. With optimized conditions in a reaction medium containing phosphate buffer and benzyl alcohol (1:1 by vol) with 230mM 1-acetonapthone, more than 98% and 81% conversion (ee >99%) was achieved in 5 hours with the wet and lyophilized cells, respectively. Both the cell preparations showed maximum conversion at 30°C. A thermodynamic characterization revealed that the wet cells were more thermostable than the lyophilized cells. The calculated half-life of the wet cells at pH 7 was 93 hours, whereas that of the lyophilized cells was 71 hours at the same condition.  相似文献   

13.
The kinetics of butyl butyrate synthesis by a lipase from Mucor miehei in different types of organic media were investigated. The three systems studied were a microaqueous medium containing enzyme in suspension in hexane, a water-hexane two-phase system, and reverse micelles. The synthesis of butyl butyrate was possible in all cases because of a favorable partition of the ester into the organic solvent. A sufficient stirring rate was necessary to achieve good reaction rates in the case of the liquid-liquid biphasic medium. The effect of water content was different according to the type of system used. The dependence of reaction rate and of conversion yield on enzyme and substrate concentrations was also investigated. From an applied point of view, the best performances were obtained with either microaqueous or liquid-liquid two-phase systems. The use of reverse micelles can be advocated only in particular conditions, such as low enzyme concentration, compatible with the specific constraints it involves.  相似文献   

14.
Purified naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 oxidized toluene to benzyl alcohol and benzaldehyde by reactions involving benzylic monooxygenation and dioxygen-dependent alcohol oxidation, respectively. Xylene and nitrotoluene isomers were also oxidized to substituted benzyl alcohol and benzaldehyde derivatives. NDO oxidized ethylbenzene sequentially through (S)-1-phenethyl alcohol (77% enantiomeric excess) and acetophenone to 2-hydroxyacetophenone. In addition, NDO also oxidized ethylbenzene through styrene to (R)-1-phenyl-1,2-ethanediol (74% enantiomeric excess) by reactions involving desaturation and dihydroxylation, respectively. Isotope experiments with 18O2, H2 18O, and D2O suggest that 1-phenethyl alcohol is oxidized to acetophenone by a minor reaction involving desaturation followed by tautomerization. The major reaction in the conversion of 1-phenethyl alcohol and benzyl alcohol to acetophenone and benzaldehyde, respectively, probably involves monohydroxylation to form a gem-diol intermediate which stereospecifically loses the incoming hydroxyl group to leave the carbonyl product. These results are compared with similar reactions catalyzed by cytochrome P-450.  相似文献   

15.
以自制的高活性漆酶为催化剂,考察漆酶催化苯甲醇制备苯甲醛的工艺条件(底物浓度、介质体系、溶剂体系、氢受体、酶的用量、通氧方式等)对氧化反应的影响。结果发现:优化反应条件为以2,2,6,6-四甲基哌啶-1-氧基(TEMPO)为介质体系且TEMPO与苯甲醇的摩尔比为1∶4、60 mmol/L的丙酮为氢受体、漆酶比酶活80 U/mL、60mmol/L的苯甲醇,反应体系通O20.5 h后密闭反应36 h,苯甲醛的产率达98%。  相似文献   

16.
The yeast-mediated acyloin condensation of benzaldehyde and pyruvic acid to form l-PAC occurs in a petroleum spirit solvent system at room temperature with moderate conversion (30%) and high enantioselectivity (86%ee) after 24 h. The addition of a small amount of ethanol (0.5% mL) to the reaction mixture inhibits the formation of the side product benzyl alcohol and increases the conversion to l-PAC. Conducting the reaction using 13C labeled pyruvate indicated that the pyruvate was incorporated into the l-PAC and that the excess pyruvate was converted into ethanol. Conducting the reaction at 5 degrees C results in similar conversion but higher enantioselectivity.  相似文献   

17.
Immobilized baker's yeast entrapped in calcium alginate beads efficiently reduces N-benzylidinemethylamine to N-methylbenzylamine in hexane at 37°C and tetrahydrofuran (THF) at 30°C in the presence of 18-crown-6, while in the presence of water as cosolvent and glucose as an additive N-benzylidinemethylamine undergoes decomposition. Benzaldoxime in a hexane–water (1:9) solvent system containing glucose as an additive is reduced to N-benzylhydroxylamine. On using an ethanol–water (1:1) solvent system, benzaldoxime is converted to benzyl alcohol and in hexane, benzene, THF, hexane–water (1:1) or acetonitrile–water (1:1) solvent systems, or using dried baker's yeast in different solvent systems, transformation of benzaldoxime does not occur.  相似文献   

18.
The reduction of substituted benzaldehydes, benzaldehyde, acetophenone and 2-acetylpyridine to the corresponding alcohols was conducted under mild reaction conditions using plant enzyme systems as biocatalysts. A screening of 28 edible plants, all of which have reductase activity, led to the selection of pinto, Flor de Mayo, ayocote, black and bayo beans because these enabled the quantitative biocatalytic reduction of benzaldehyde to benzyl alcohol. The biocatalyzed reduction of substituted benzaldehydes was dependent on the electronic and steric nature of the substituent. Pinto beans were the most active reductase source, reduced 2-Cl, 4-Cl, 4-Me and 4-OMe-benzaldehyde with a conversion between 70% and 100%. All the beans reduced 2- and 4-fluorobenzaldehyde at a conversion between 83% and 100%. The reduction of the ketones was low, but bayo and black beans yielded (R)-1-(pyridin-2-yl)ethanol in enantiopure form.  相似文献   

19.
The effect of the small anesthetic molecule, benzyl alcohol, on the structure of various bilayer system has been studied by optical, electrical, and x-ray diffraction techniques. We find that the modifications in bilayer thickness caused by benzyl alcohol differ dramatically for planar (or black lipid) bilayers containing solvent, planar bilayers containing little or no solvent, and vesicular bilayers. Benzyl alcohol increases the thickness of planar bilayers containing n-alkane solvents, yet decreases the thickness of "solvent-free" planar bilayers. The effect of benzyl alcohol on vesicular bilayers below the phase transition temperature also depends on whether solvent is present in the bilayers. Without solvent, gel-state bilayers are reduced in thickness by benzyl alcohol, whereas in the presence of solvent, the thickness is unchanged. Above the phase transition temperature, benzyl alcohol has no measurable effect on vesicular bilayer thickness, whether solvent is present or not. These results indicate that different model membrane systems respond quite differently to a particular anesthetic.  相似文献   

20.
Summary The respective roles of organic solvent and of water in butyl butyrate synthesis from n-butanol and n-butyric acid in n-hexane by Mucor miehei lipase have been investigated by analysis of the kinetics and the reaction balances. Esterificaton was found to take place in both low water systems containing solid enzyme in hexane and in biphasic aqueous enzyme solution/hexane systems. In the solid enzyme system, the enzyme adsorbed the water produced, thus delaying the appearance of a discrete aqueous phase. As expected, the presence of some water was indispensable for this system, as its removal or exclusion by various means (adsorption, distillation) affected enzyme activity. However, water removal had little effect on the final yield of esterification. Reaction velocities were quite similar for the solid enzyme/hexane system and for the biphasic aqueous enzyme solution/hexane system. In the latter case, the butyl butyrate formed was almost exclusively found in the organic phase. Ethyl butyrate, a more polar compound, was synthesized with a lower yield. These results allow the conclusion that the reaction took place in a phase consisting of either solid hydrated enzyme with no discrete aqueous phase or of an aqueous enzyme solution by basically similar mechanisms according to the amount of water available to the system, the esterification being driven to completion by transfer of the ester into the organic phase because of a favourable partition coefficient. Offprint requests to: F. Monot  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号