共查询到12条相似文献,搜索用时 0 毫秒
1.
van de Pol M Vindenes Y Sæther BE Engen S Ens BJ Oosterbeek K Tinbergen JM 《Proceedings. Biological sciences / The Royal Society》2011,278(1725):3713-3722
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms-which probably act in many species-can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. 相似文献
2.
Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models 总被引:4,自引:0,他引:4
Keith DA Akçakaya HR Thuiller W Midgley GF Pearson RG Phillips SJ Regan HM Araújo MB Rebelo TG 《Biology letters》2008,4(5):560-563
Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change. 相似文献
3.
1. Development of population projections requires estimates of observation error, parameters characterizing expected dynamics such as the specific population growth rate and the form of density regulation, the influence of stochastic factors on population dynamics, and quantification of the uncertainty in the parameter estimates. 2. Here we construct a Population Prediction Interval (PPI) based on Bayesian state space modelling of future population growth of 28 reintroduced ibex populations in Switzerland that have been censused for up to 68 years. Our aim is to examine whether the interpopulation variation in the precision of the population projections is related to differences in the parameters characterizing the expected dynamics, in the effects of environmental stochasticity, in the magnitude of uncertainty in the population parameters, or in the observation error. 3. The error in the population censuses was small. The median coefficient of variation in the estimates across populations was 5.1%. 4. Significant density regulation was present in 53.6% of the populations, but was in general weak. 5. The width of the PPI calculated for a period of 5 years showed large variation among populations, and was explained by differences in the impact of environmental stochasticity on population dynamics. 6. In spite of the high accuracy in population estimates, the uncertainty in the parameter estimates was still large. This uncertainty affected the precision in the population predictions, but it decreased with increasing length of study period, mainly due to higher precision in the estimates of the environmental variance in the longer time-series. 7. These analyses reveal that predictions of future population fluctuations of weakly density-regulated populations such as the ibex often become uncertain. Credible population predictions require that this uncertainty is properly quantified. 相似文献
4.
5.
《Journal of biological dynamics》2013,7(1):187-205
To understand the interplay between environmental stochasticity and Allee effects, we analyse persistence, asymptotic extinction, and conditional persistence for stochastic difference equations. Our analysis reveals that persistence requires that the geometric mean of fitness at low densities is greater than one. When this geometric mean is less than one, asymptotic extinction occurs with high probability for low initial population densities. Additionally, if the population only experiences positive density-dependent feedbacks, conditional persistence occurs provided the geometric mean of fitness at high population densities is greater than one. However, if the population experiences both positive and negative density-dependent feedbacks, conditional persistence only occurs if environmental fluctuations are sufficiently small. We illustrate counter-intuitively that environmental fluctuations can increase the probability of persistence when populations are initially at low densities, and can cause asymptotic extinction of populations experiencing intermediate predation rates despite conditional persistence occurring at higher predation rates. 相似文献
6.
Birgit Fessl Glyn H. Young Richard P. Young Jorge Rodríguez-Matamoros Michael Dvorak Sabine Tebbich John E. Fa 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1543):1019-1030
Habitat destruction and predation by invasive alien species has led to the disappearance of several island populations of Darwin''s finches but to date none of the 13 recognized species have gone extinct. However, driven by rapid economic growth in the Galápagos, the effects of introduced species have accelerated and severely threatened these iconic birds. The critically endangered mangrove finch (Camarhynchus heliobates) is now confined to three small mangroves on Isabela Island. During 2006–2009, we assessed its population status and monitored nesting success, both before and after rat poisoning. Population size was estimated at around only 100 birds for the two main breeding sites, with possibly 5–10 birds surviving at a third mangrove. Before rat control, 54 per cent of nests during incubation phase were predated with only 18 per cent of nests producing fledglings. Post-rat control, nest predation during the incubation phase fell to 30 per cent with 37 per cent of nests producing fledglings. During the nestling phase, infestation by larvae of the introduced parasitic fly (Philornis downsi) caused 14 per cent additional mortality. Using population viability analysis, we simulated the probability of population persistence under various scenarios of control and showed that with effective management of these invasive species, mangrove finch populations should start to recover. 相似文献
7.
8.
Characterizing population vulnerability for 758 species 总被引:5,自引:0,他引:5
We investigate relationships between life history traits and the character of population dynamics as revealed by time series data. Our classification of time series is according to 'extinction category,' where we identify three classes of populations: (i) weakly varying populations with such high growth rates that long-term persistence is likely (unless some extreme catastrophe occurs); (ii) populations with such low growth rates that average population size must be large to buffer them against extinction in a variable environment; and (iii) highly variable populations that fluctuate so dramatically that dispersal or some other refuge mechanism is likely to be key to their avoidance of extinction. Using 1941 time series representing 758 species from the Global Population Dynamics Database, we find that, depending on the form of density dependence one assumes, between 46 and 90% of species exhibit dynamics that are so variable that even large carrying capacities could not buffer them against extinction on a 100-year time horizon. The fact that such a large proportion of population dynamics are so locally variable vindicates the growing realization that dispersal, habitat connectedness, and large-scale processes are key to local persistence. Furthermore, for mammals, simply by knowing body size, age at first reproduction, and average number of offspring we could correctly predict extinction categories for 83% of species (60 of 72). 相似文献
9.
Morales 《Ecology letters》1999,2(4):228-232
Analysis of long time series suggests that environmental fluctuations may be accurately represented by 1/ f noise (pink noise), where temporal correlation is found at several scales, and the range of fluctuations increases over time. Previous studies on the effects of coloured noise on population dynamics used first or second order autoregressive noise. I examined the importance of coloured noise for extinction risk using true 1/ f noise. I also considered the problem of estimating extinction risk with a limited sample of environmental variation. Pink noise environments increased extinction risk in random walk models where environmental variation affected the growth rate. However, pink noise environments decreased extinction risk in the Ricker model where environmental variation modified the carrying capacity. Underestimation of environmental variance almost always yielded underestimation of extinction risk. For either population viability analysis or management, we should carefully consider the long-term behaviour of the environment as well as how we include environmental noise in population models. 相似文献
10.
P. Leimgruber B. Senior Uga Myint Aung M. A. Songer T. Mueller C. Wemmer & J. D. Ballou 《Animal Conservation》2008,11(3):198-205
Captive Asian elephants Elephas maximus , used as work animals, constitute up to 22–30% of remaining Asian elephants. Myanmar has the largest captive population worldwide (∼6000), maintained at this level for over a century. We used published demographic data to assess the viability of this captive population. We tested how this population can be self-sustained, how many elephants must be supplemented from the wild to maintain it, and what consequences live capture may have for Myanmar's wild population. Our results demonstrate that the current captive population is not self-sustaining because mortality is too high and birth rates are too low. Our models also suggest ∼100 elephants year−1 have been captured in the wild to supplement the captive population. Such supplementation cannot be supported by a wild population of fewer than 4000 elephants. Given the most recent expert estimate of ∼2000 wild elephants remaining in Myanmar, a harvest of 100 elephants year−1 could result in extinction of the wild population in 31 years. Continued live capture threatens the survival of wild and captive populations and must stop. In addition, captive breeding should be increased. These measures are essential to slow the decline and extinction of all of Myanmar's elephants. 相似文献
11.
12.
Stochastic matrix models for conservation and management: a comparative review of methods 总被引:5,自引:0,他引:5
Stochastic matrix models are frequently used by conservation biologists to measure the viability of species and to explore various management actions. Models are typically parameterized using two or more sets of estimated transition rates between age/size/stage classes. While standard methods exist for analyzing a single set of transition rates, a variety of methods have been employed to analyze multiple sets of transition rates. We review applications of stochastic matrix models to problems in conservation and use simulation studies to compare the performance of different analytic methods currently in use. We find that model conclusions are likely to be robust to the choice of parametric distribution used to model vital rate fluctuations over time. However, conclusions can be highly sensitive to the within-year correlation structure among vital rates, and therefore we suggest using analytical methods that provide a means of conducting a sensitivity analysis with respect to correlation parameters. Our simulation results also suggest that the precision of population viability estimates can be improved by using matrix models that incorporate environmental covariates in conjunction with experiments to estimate transition rates under a range of environmental conditions. 相似文献