首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Extinction risk is a key area of investigation for contemporary ecologists and conservation biologists. Practical conservation efforts for vulnerable species can be considerably enhanced by thoroughly understanding the ecological processes that interact to determine species persistence or extinction. Theory has highlighted the importance of both extrinsic environmental factors and intrinsic demographic processes. In laboratory microcosms, single-species single-habitat patch experimental designs have been widely used to validate the theoretical prediction that environmental heterogeneity can increase extinction risk. Here, we develop on this theme by testing the effects of fluctuating resource levels in experimental multispecies metapopulations. We compare a three-species host-parasitoid assemblage that exhibits apparent competition to the individual pairwise, host-parasitoid interactions. Existing theory is broadly supported for two-species assemblages: environmental stochasticity reduces trophic interaction persistence time, while metapopulation structure increases persistence time. However, with increasing assemblage complexity, the effects of trophic interactions mask environmental impacts and persistence time is further reduced, regardless of resource renewal regime. We relate our findings to recent theory, highlighting the importance of taking into account both intrinsic and extrinsic factors, over a range of spatial scales, in order to understand resource-consumer dynamics.  相似文献   

2.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

3.
Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in variable environments if high-quality data are available for model selection and if density-dependent demographic stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic stochasticity is required if predicted extinction rates are to be relied upon for conservation planning.  相似文献   

4.
Understanding how environmental fluctuations affect population persistence is essential for predicting the ecological impacts of expected future increases in climate variability. However, two bodies of theory make opposite predictions about the effect of environmental variation on persistence. Single-species theory, common in conservation biology and population viability analyses, suggests that environmental variation increases the risk of stochastic extinction. By contrast, coexistence theory has shown that environmental variation can buffer inferior competitors against competitive exclusion through a storage effect. We reconcile these two perspectives by showing that in the presence of demographic stochasticity, environmental variation can increase the chance of extinction while simultaneously stabilizing coexistence. Our stochastic simulations of a two-species storage effect model reveal a unimodal relationship between environmental variation and coexistence time, implying maximum coexistence at intermediate levels of environmental variation. The unimodal pattern reflects the fact that the stabilizing influence of the storage effect accumulates rapidly at low levels of environmental variation, whereas the risk of extinction due to the combined effects of environmental variation and demographic stochasticity increases most rapidly at higher levels of variation. Future increases in environmental variation could either increase or decrease an inferior competitor's expected persistence time, depending on the distance between the present level of environmental variation and the optimal level anticipated by this theory.  相似文献   

5.
Understanding the relationships between environmental fluctuations, population dynamics and species interactions in natural communities is of vital theoretical and practical importance. This knowledge is essential in assessing extinction risks in communities that are, for example, pressed by changing environmental conditions and increasing exploitation. We developed a model of density dependent population renewal, in a Lotka–Volterra competitive community context, to explore the significance of interspecific interactions, demographic stochasticity, population growth rate and species abundance on extinction risk in populations under various autocorrelation (colour) regimes of environmental forcing. These factors were evaluated in two cases, where either a single species or the whole community was affected by the external forcing. Species' susceptibility to environmental noise with different autocorrelation structure depended markedly on population dynamics, species' position in the abundance hierarchy and how similarly community members responded to external forcing. We also found interactions between demographic stochasticity and environmental noise leading to a reversal in extinction probabilities from under- to overcompensatory dynamics. We compare our results with studies of single species populations and contrast possible mechanisms leading to extinctions. Our findings indicate that abundance rank, the form of population dynamics, and the colour of environmental variation interact in affecting species extinction risk. These interactions are further modified by interspecific interactions within competitive communities as the interactions filter and modulate the environmental noise.  相似文献   

6.
Genetic stochasticity due to small population size contributes to population extinction, especially when population fragmentation disrupts gene flow. Estimates of effective population size ( N e) can therefore be informative about population persistence, but there is a need for an assessment of their consistency and informative relevance. Here we review the body of empirical estimates of N e for wild populations obtained with the temporal genetic method and published since Frankham's (1995 ) review. Theoretical considerations have identified important sources of bias for this analytical approach, and we use empirical data to investigate the extent of these biases. We find that particularly model selection and sampling require more attention in future studies.
We report a median unbiased N e estimate of 260 (among 83 studies) and find that this median estimate tends to be smaller for populations of conservation concern, which may therefore be more sensitive to genetic stochasticity. Furthermore, we report a median N e/ N ratio of 0.14, and find that this ratio may actually be higher for small populations, suggesting changes in biological interactions at low population abundances. We confirm the role of gene flow in countering genetic stochasticity by finding that N e correlates strongest with neutral genetic metrics when populations can be considered isolated. This underlines the importance of gene flow for the estimation of N e, and of population connectivity for conservation in general. Reductions in contemporary gene flow due to ongoing habitat fragmentation will likely increase the prevalence of genetic stochasticity, which should therefore remain a focal point in the conservation of biodiversity.  相似文献   

7.
Demographic stochasticity (due to the probabilistic nature of the birth–death process) and demographic heterogeneity (between-individual differences in demographic parameters) have long been seen as factors affecting extinction risk. While demographic stochasticity can be independent of underlying species traits, demographic heterogeneity may strongly depend on phenotypic variation. However, how phenotypic variation can affect extinction risk is largely unknown. Here, I develop a stochastic metapopulation model that takes into account the effects of demographic stochasticity and phenotypic variation in the traits controlling colonization rates to assess what the effect of phenotypic variation may be on the persistence of the metapopulation. Although phenotypic variation can lead to a decrease in metapopulation persistence under some conditions, it also may lead to an increase in persistence whenever phenotypic mismatch—or the distance between the optimal trait value and the population mean—is large. This mismatch can in turn arise from a variety of ecological and evolutionary reasons, including weak selection or a recent history of invasion. Last, the effect of phenotypic variation has a deterministic component on colonization rates, and a stochastic component on persistence through colonization rates, but both are important to understand the overall effect. These results have important implications for the conservation of threatened species and management practices that may historically have overlooked phenotypic variation as unimportant noise around mean values of interest.  相似文献   

8.
Theoretical ecologists have long sought to understand how the persistence of populations depends on the interactions between exogenous (biotic and abiotic) and endogenous (e.g., demographic and genetic) drivers of population dynamics. Recent work focuses on the autocorrelation structure of environmental perturbations and its effects on the persistence of populations. Accurate estimation of extinction times and especially determination of the mechanisms affecting extinction times is important for biodiversity conservation. Here we examine the interaction between environmental fluctuations and the scaling effect of the mean population size with its variance. We investigate how interactions between environmental and demographic stochasticity can affect the mean time to extinction, change optimal patch size dynamics, and how it can alter the often-assumed linear relationship between the census size and the effective population size. The importance of the correlation between environmental and demographic variation depends on the relative importance of the two types of variation. We found the correlation to be important when the two types of variation were approximately equal; however, the importance of the correlation diminishes as one source of variation dominates. The implications of these findings are discussed from a conservation and eco-evolutionary point of view.  相似文献   

9.
To understand the interplay between environmental stochasticity and Allee effects, we analyse persistence, asymptotic extinction, and conditional persistence for stochastic difference equations. Our analysis reveals that persistence requires that the geometric mean of fitness at low densities is greater than one. When this geometric mean is less than one, asymptotic extinction occurs with high probability for low initial population densities. Additionally, if the population only experiences positive density-dependent feedbacks, conditional persistence occurs provided the geometric mean of fitness at high population densities is greater than one. However, if the population experiences both positive and negative density-dependent feedbacks, conditional persistence only occurs if environmental fluctuations are sufficiently small. We illustrate counter-intuitively that environmental fluctuations can increase the probability of persistence when populations are initially at low densities, and can cause asymptotic extinction of populations experiencing intermediate predation rates despite conditional persistence occurring at higher predation rates.  相似文献   

10.
种群生存力分析研究进展和趋势   总被引:13,自引:0,他引:13  
种群生存力分析(PVA)是正在迅速发展的新方法,已成为保护生物学研究的热点。它主要研究随机干扰对小种群绝灭的影响,其目的是制定最小可存活种群(MVP),把绝灭减少到可接受的水平。随机干扰可分四类;统计随机性,环境随机性,自然灾害和遗传随机性。确定MVP的方法有三种:理论模型,模拟模型,模拟模型和岛屿生物地理学方法。理论模型主要研究理想或特定条件下随机因素对种群的影响;模拟模型是利用计算机模拟种群绝灭过程;岛屿生物地理学方法主要分析岛屿物种的分布和存活,证实分析模型和模拟模型。已有大量的文献研究统计随机性,环境随机性和自然灾害的行为特征,但遗传因素与种群生存力之间的关系还不清楚。建立包括四种随机性的综合性模型,广泛地检验PVA模型,系统地研制目标种的遗传和生态特性以及MVP的实际应用是PVA的发展趋势。  相似文献   

11.
It is accepted that accurate estimation of risk of population extinction, or persistence time, requires prediction of the effect of fluctuations in the environment on population dynamics. Generally, the greater the magnitude, or variance, of environmental stochasticity, the greater the risk of population extinction. Another characteristic of environmental stochasticity, its colour, has been found to affect population persistence. This is important because real environmental variables, such as temperature, are reddened or positively temporally autocorrelated. However, recent work has disagreed about the effect of reddening environmental stochasticity. Ripa and Lundberg (1996) found increasing temporal autocorrelation (reddening) decreased the risk of extinction, whereas a simple and powerful intuitive argument (Lawton 1988) predicts increased risk of extinction with reddening. This study resolves the apparent contradiction, in two ways, first, by altering the dynamic behaviour of the population models. Overcompensatory dynamics result in persistence times increasing with increased temporal autocorrelation; undercompensatory dynamics result in persistence times decreasing with increased temporal autocorrelation. Secondly, in a spatially subdivided population, with a reasonable degree of spatial heterogeneity in patch quality, increasing temporal autocorrelation in the environment results in decreasing persistence time for both types of competition. Thus, the inclusion of coloured noise into ecological models can have subtle interactions with population dynamics.  相似文献   

12.
With the interest in conservation biology shifting towards processes from patterns, and to populations from communities, the theory of metapopulation dynamics is replacing the equilibrium theory of island biogeography as the population ecology paradigm in conservation biology. The simplest models of metapopulation dynamics make predictions about the effects of habitat fragmentation - size and isolation of habitat patches - on metapopulation persistence. The simple models may be enriched by considerations of the effects of demographic and environmental stochasticity on the size and extinction probability of local populations. Environmental stochasticity affects populations at two levels: it makes local extinctions more probable, and it also decreases metapopulation persistence time by increasing the correlation of extinction events across populations. Some controversy has arisen over the significance of correlated extinctions, and how they may affect the optimal subdivision of metapopulations to maximize their persistence time.  相似文献   

13.
Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.  相似文献   

14.
Establishing species conservation priorities and recovery goals is often enhanced by extinction risk estimates. The need to set goals, even in data-deficient situations, has prompted researchers to ask whether general guidelines could replace individual estimates of extinction risk. To inform conservation policy, recent studies have revived the concept of the minimum viable population (MVP), the population size required to provide some specified probability of persistence for a given period of time. These studies conclude that long-term persistence requires ≥5000 adult individuals, an MVP threshold that is unaffected by taxonomy, life history or environmental conditions. Here, we re-evaluate this suggestion. We find that neither data nor theory supports its general applicability, raising questions about the utility of MVPs for conservation planning.  相似文献   

15.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

16.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

17.
Krüger O 《Oecologia》2007,152(3):459-471
Density dependence and environmental stochasticity are both potentially important processes influencing population demography and long-term population growth. Quantifying the importance of these two processes for population growth requires both long-term population as well as individual-based data. I use a 30-year data set on a goshawk Accipiter gentilis population from Eastern Westphalia, Germany, to describe the key vital rate elements to which the growth rate is most sensitive and test how environmental stochasticity and density dependence affect long-term population growth. The asymptotic growth rate of the fully age-structured mean matrix model was very similar to the observed one (0.7% vs. 0.3% per annum), and population growth was most elastic to changes in survival rate at age classes 1-3. Environmental stochasticity led only to a small change in the projected population growth rate (between -0.16% and 0.67%) and did not change the elasticities qualitatively, suggesting that the goshawk life history of early reproduction coupled with high annual fertility buffers against a variable environment. Age classes most crucial to population growth were those in which density dependence seemed to act most strongly. This emphasises the importance of density dependence as a regulatory mechanism in this goshawk population. It also provides a mechanism that might enable the population to recover from population lows, because a mean matrix model incorporating observed functional responses of both vital rates to population density coupled with environmental stochasticity reduced long-term extinction risk of 30% under density-independent environmental stochasticity and 60% under demographic stochasticity to zero.  相似文献   

18.
Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population‐years. Using that model, 50‐year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early‐successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long‐term persistence of C. pitcheri in Indiana likely to depend on continued active management.  相似文献   

19.
Biological invasions are a leading threat to freshwater biodiversity worldwide. A central unanswered question of invasion ecology is why some introduced populations establish while most fail. Answering this question will allow resource managers to increase the specificity and effectiveness of control efforts and policy. We studied the establishment of spiny water flea (Bythotrephes longimanus) in the United States and Canada by modeling introduction failure caused by demographic stochasticity, environmental variation, and seasonal environmental forcing. We compared predicted establishment rates with observed invasions of inland lakes in Ontario, Canada. Our findings suggest that environmental forcing can cause “windows” of invasion opportunity so that timing of introductions might be a greater determinant of population establishment than demographic stochasticity and random environmental variation. We expect this phenomenon to be exhibited by species representing a wide range of life histories. For spiny water flea in North America, a large window of invasion opportunity opens around the fourth week of May, persists through the summer, and closes with decreasing water temperatures in autumn. These results show how timing of introductions with respect to seasonally forced environmental drivers can be a key determinant of establishment success. By focusing on introductions during windows of invasion opportunity, resource managers can more effectively control invasion rates.  相似文献   

20.
Plant population dynamics is fundamental to identify which parts of the life cycle are important when designing management actions. In this study, the short-term population dynamics of Helianthemum caput-felis (Cistaceae), a perennial plant distributed throughout the western Mediterranean Basin, was investigated by monitoring 98 permanent plots randomly placed along the overall distribution range for three years (2013–2015). Demographic surveys were analysed by Integral Projection Models (IPMs), and the analysis of population growth rates, elasticities, and life table response experiment (LTRE) analyses were performed. Under deterministic conditions, the H. caput-felis population showed a slight increase in the first censuses, but a general population decline followed. This trend was probably due to the shrinkage of plants in the last year, which correlated negatively with reproductive traits. Despite this decline, the population was at equilibrium under the simulated environmental stochasticity. The population dynamics of H. caput-felis followed the general pattern typical for long-lived Mediterranean plants: populations with growth rates closer to the equilibrium in the long term, determinant role of the survival-growth transitions for the population growth rate, slow growth and stasis, longevity of established individuals, shrinkage of medium-large plants, low recruitment rate, high generation times and mean long lifespans. The results of this study, which highlight how conservation measures can be focused on protecting and increasing the number of plants of medium-large size, provide important information for the planning management conservation actions for H. caput-felis and for several Mediterranean plants that show a similar life-history strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号