首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The capacity of five synthetic analogs of [8-arginine] vasopressin (AVP) to stimulate frog skin sodium transport (natriferic activity) was characterized electrophysiologically using the method of short-circuit current, and compared to that of synthetic AVP. The analogs used were [8-arginine] vasopressins modified in positions 1 and 2: [1-(1-mercapto-4-tert-butylcyclohexaneacetic acid)] AVP (I); [1-(1-mercapto-4-methylcyclohexaneacetic acid)] AVP (II); [1-(1-mercapto-4-methylcyclohexaneacetic acid)-2-O-methyltyrosine] AVP (III); and in position 4: [1-(1-mercaptocyclohexaneacetic acid)-4-arginine] AVP (IV); [1-(2-mercaptopropionic acid)-4-arginine] AVP (V). The addition of synthetic vasopressins I, II and V to the frog skin resulted in a weaker stimulation of the skin sodium transport, measured as the level of the short-circuit current (Isc), as compared to that induced by synthetic AVP. In relation to natriferic activity, analogs III and IV did not change the electrical parameters of the skin. It is concluded that introduction of cyclic structure at the beta-carbon in position 1 of the vasopressin molecule decreased its natriferic activity by about 70%. The same reduction of the activity was caused by the replacement of the glutamine residue in position 4 with arginine, and deamination in position 1. Cyclic structure bound in position 1 together with methylation of tyrosine in position 2 resulted in a full suppression of natriferic activity. Similarly, introduction of cyclic group in position 1 in combination with substitution of glutamine in position 4 with arginine totally abolished natriferic activity.  相似文献   

2.
We report the solid phase synthesis of a series of 16 linear analogues of the cyclic antagonist of the antidiuretic (V2) and the vasopressor (V1) responses to arginine vasopressin (AVP), d(CH2)5[D-Tyr(Et)2, Val4]AVP(A). Peptide 1, the linear precursor of (A), (CH2)5(SH)-CH2-CO-D-Tyr(Et)-Phe-Val-Asn-Cys-Pro-Arg-Gly-NH2 was modified at position six with alpha-L-aminobutyric acid (Abu) to give peptide 2. Further modifications of the Abu6 analogue (No. 2) at position one by substituting cyclohexylacetic acid (Caa), cyclohexylpropionic acid (Cpa), 1-adamantaneacetic acid (Aaa), phenylacetic acid (Phaa), tert.-butylacetic acid (t-Baa), isovaleric acid (Iva), propionic acid (Pa), L-penicillamine (P), tert.-butoxycarbonyl (Boc) or omitting any substituent at this position, and/or in combination with Arg-NH2(9), Ala-NH2(9), D-Arg8-Arg-NH2(9), and desGly9 modifications yielded the remaining 14 peptides. All 16 peptides were examined for agonistic and antagonistic potencies in AVP V2 and V1 assays in rats. Apart from the Cpa analogue and the analogue lacking any substituent in the 1-position, all exhibit substantial V2 and V1 antagonism. A number are as potent as (A) as V2 antagonists. With an anti-V2 pA2 = 8.11 +/- 0.07, Aaa-D-Tyr(Et)-Phe-Val-Asn-Abu-Pro-Arg-Arg-NH2 (No. 6) is as potent as any cyclic AVP V2 antagonist reported to date. The PaI analogue of No. 6 exhibits promising anti-V2/anti-V1 selectivity. These findings prove conclusively that a ring structure is not a requirement for recognition of or for binding to AVP V2 or V1 receptors. This discovery thus offers a promising new approach to the design of peptide and non-peptide antagonists of AVP and perhaps also to other cyclic peptides such as somatostatin, atrial-natriuretic factor, insulin, and the recently discovered endothelin. Some of these linear antagonists may be of value as pharmacological tools and as therapeutic agents.  相似文献   

3.
Vasopressin and its synthetic analogs were studied for their effect on transepithelial water flux in frog urinary bladder. As compared with AVP, 1-deamino-8-D-arginine vasopressin (dDAVP) was about 40 times less effective in stimulating osmotic water flow. The vasopressin analogs obtained by modification in positions 1 and 2 were: [1-(1-mercapto-4-tert-butylcyclohexaneacetic acid)] AVP (I); [1-(1-mercapto-4-methylcyclohexaneacetic acid)]AVP (II); [1-(1-mercapto-4-methylcyclohexaneacetic acid)-2-O-methyltyrosine]AVP (III); and those modified in position 4 were: [1-(1-mercaptocyclohexaneacetic acid)-4-arginine] AVP (IV); [1-(2-mercaptopropionic acid)-4-arginine]AVP (V). Any of the above analogs did not influence basal, but antagonized vasopressin-stimulated water flux. N-terminally extended analogs of AVP: Ala-AVP (VI); Ser-Ala-AVP (VII) and Thr-Ser-Ala-AVP (VIII) stimulated osmotic water flux to the same extent in concentration 200 times higher as that of AVP. We conclude from these studies that vasopressin analogs (I-V) competitively antagonize vasopressin-stimulated hydroosmotic activity in frog urinary bladder probably at the epithelial vasotocin V1 and/or V2 receptor site. N-terminal extension of the vasopressin molecule did not influence the capacity of AVP to induce V2 receptor-mediated action, even when used at higher concentrations.  相似文献   

4.
In this work, Raman spectroscopy (RS) was employed to characterize molecular structures of [Arg8]vasopressin (AVP) and its [Acc2,D-Arg8]AVP, [Acc3]AVP, and [Cpa1, Acc3]AVP analogues. The RS band assignments have been proposed. To determine the mechanism of adsorption of the above-mentioned compounds adsorbed on a colloidal silver surface, surface-enhanced Raman spectra (SERS) were measured. The SERS spectra were used to determine relative proximity of the adsorbed functional groups of [corrected] investigated peptides and their orientation on the silver surface. The AVP and [Acc3]AVP SERS spectra (Acc: 1-aminocyclohexane-1-carboxylic acid) show that the L-tyrosine (Tyr) lies far from the metal surface, whereas the [Cpa1,Acc3]AVP spectrum (Cpa: 1-mercaptocyclohexaneacetic acid) provides evidence that Tyr interacts with the silver surface. These results suggest that [corrected] the binding of the Tyr-ionized phenolic group might be responsible for the selectivity of the analogues. We show that the aromatic ring of L-phenylalanine (Phe) of AVP and [Acc2,D-Arg8]AVP interacts with the silver surface. The strength of this interaction is considerably weaker for [Acc2,D-Arg8]AVP than for AVP. This might be due either to a longer distance between the Phe ring and the silver surface, or to the almost perpendicular orientation of the Phe ring towards the surface. The carbonyl group of the L-glutamine [corrected] (Gln) or L-asparagine [corrected](Asn) of AVP, [Acc2,D-Arg8]AVP, and [Acc3]AVP is strongly bound to the silver surface. We have also found that all peptides adsorb on the silver surface via sulfur atoms of the disulfide bridge, adopting a "GGG" conformation, except [Cpa1,Acc3]AVP, which accepts a "TGG" geometry.  相似文献   

5.
A variety of structural changes were made in the C-terminals of four potent antidiuretic (V2) antagonists. The parent analogs were all derivatives of [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]arginine-vasopressin, d(CH2)5AVP, namely d(CH2)5[D-Phe2,Ile4]AVP, d(CH2)5[D-Ile2,Ile4]AVP, d(CH2)5[D-Tyr(Et)2, Val4]AVP and d(CH2)5[D-Tyr(Et)2,Ile4]AVP. A number of amino acid amides were substituted for the C-terminal 9-glycinamide without reducing their V2-antagonistic potencies in rats. Many non-amino acid structures were also tolerated at the C-terminals of these antagonists and this end of these peptides can be prolonged without interfering with antagonistic potencies. Such altered V2-antagonists may be useful for the development of radioactive ligands, affinity labels and in affinity columns for studies on antidiuretic receptors. These C-terminal modifications also provide useful information for the further development of potent and specific V2-antagonists which can be valuable pharmacological tools and also promise to become useful clinically for the treatment of excessive water retention.  相似文献   

6.
A sterically constrained non-coded amino acid, 1-aminocyclopentane-1-carboxylic acid (Apc), was introduced in position 7 or 8 of the bradykinin (BK) B(2) receptor antagonist, [D-Arg(0), Hyp(3), Thi(5, 8), D-Phe(7)]BK, previously synthesized by Stewart's group. This modification is believed to reduce the flexibility of the peptides, thereby forcing the peptide backbone and side chains to adopt specific orientations. Apc substitution was combined with acylation of the N-terminus with 1-adamantaneacetic acid (Aaa). The activity of four new analogues was assayed in isolated rat uterus and in rat blood pressure tests. The results clearly demonstrated that the Apc residue inserted in position 7 led to a reduction of antagonistic properties in the rat uterus assay or even restored the agonism in the blood pressure test, whereas Apc at position 8 enhanced antagonistic potency in both the tests. In both cases, acylation of the N-terminus led to the enhancement of the antagonistic potency. On the basis of these findings, new potent and selective B(2) blockers might be designed.  相似文献   

7.
Arginine vasopressin (AVP) mediates a wide variety of biological actions by acting on three distinct G-protein coupled receptors, termed V(1a) (vascular), V(1b) (pituitary) and V(2) (renal). It also binds to the oxytocin (OT) receptor. As part of a program aimed at the design of selective agonists for the human V(1b) receptor, we recently reported the human V(1b), V(1a), V(2) and OT receptor affinities of the following position 4 substituted analogues of [deamino-Cys(1)] arginine vasopressin (dAVP)-(1) d[Leu(4)]AVP, (2) d[Orn(4)]AVP, (3) d[Lys(4)]AVP, (4) d[Har(4)]AVP, (5) d[Arg(4)]AVP, (6) d[Val(4)]AVP, (7) d[Ala(4)]AVP, (8) d[Abu(4)]AVP, (9) d[Nva(4)]AVP, (10) d[Nle(4)]AVP, (11) d[Ile(4)]AVP, (12) d[Phe(4)]AVP, (13) d[Asn(4)]AVP, (14) d[Thr(4)]AVP: (15) d[Dap(4)]AVP. With the exception of Nos. 7 and 12, all peptides exhibit very high affinities for the human V(1b) receptor. Furthermore, peptides 1-4 exhibit high selectivities for the human V(1b) receptor with respect to the V(1a), V(2) and OT receptors and, with d[Cha(4)]AVP, in functional tests, are the first high affinity selective agonists for the human V(1b) receptor (Cheng LL et al., J. Med. Chem. 47: 2375-2388, 2004). We report here the pharmacological properties of peptides 1-4, 5 (from a resynthesis), 7, 9-13, 15 in rat bioassays (antidiuretic, vasopressor and oxytocic) (in vitro: no Mg(++)) with those previously reported for peptides 5, 6, 8, 14. We also report the rat V(1b), V(1a), V(2) and OT receptor affinities of peptides 1-5 and the rat V(2) receptor affinities for peptides: 7-15.The antidiuretic activities in units/mg of peptides 1-15, are: 1=378; 2=260; 3=35; 4=505; 5=748; 6=1150; 7=841; 8=1020; 9=877; 10=1141; 11=819, 12=110; 13=996; 14=758; 15=1053. Peptides 1-4 exhibit respectively the following rat and human (in brackets) V(2) receptor affinities: 1=3.1 nm (245 nm); 2=3.4 nm (1125 nm); 3=24.6 nm (11,170 nm); 4=0.6 nm (1386 nm). Their rat V(1b) receptor affinities are 1=0.02 nm; 2=0.45 nm; 3=9.8 nm; 4=0.32 nm. Their rat V(1a) receptor affinities are 1=1252 nm; 2=900 nm; 3=1478 nm; 4=32 nm. Their rat oxytocin (OT) receptor affinities are 1=481 nm; 2=997 nm; 3=5042 nm; 4=2996 nm. All four peptides have high affinities and selectivities for the rat V(1b) receptor with respect to the rat V(1a) and OT receptors. However, in contrast to their high selectivity for the human V(1b) receptor with respect to the human V(2) receptor, they are not selective for the V(1b) receptor with respect to the V(2) receptor in the rat. These findings confirm previous observations of profound species differences between the rat and human V(2) receptors. Peptides 1-4 are promising leads to the design of the first high affinity selective agonists for the rat V(1b) receptor.  相似文献   

8.
In this study we present the synthesis and some pharmacological properties of fourteen new analogues of neurohypophyseal hormones conformationally restricted in the N-terminal part of the molecule. All new peptides were substituted at position 2 with cis-1-amino-4-phenylcyclohexane-1-carboxylic acid (cis-Apc). Moreover, one of the new analogues: [cis-Apc(2), Val(4)]AVP was also prepared in N-acylated forms with various bulky acyl groups. All the peptides were tested for pressor, antidiuretic, and in vitro uterotonic activities. We also determined the binding affinity of the selected compounds to human OT receptor. Our results showed that introduction of cis -Apc(2) in position 2 of either AVP or OT resulted in analogues with high antioxytocin potency. Two of the new compounds, [Mpa(1),cis-Apc(2)]AVP and [Mpa(1),cis-Apc(2),Val(4)]AVP, were exceptionally potent antiuterotonic agents (pA(2) = 8.46 and 8.40, respectively) and exhibited higher affinities for the human OT receptor than Atosiban (K (i) values 5.4 and 9.1 nM). Moreover, we have demonstrated for the first time that N -terminal acylation of AVP analogue can improve its selectivity. Using this approach, we obtained compound Aba[cis-Apc(2),Val(4)]AVP (XI) which turned out to be a moderately potent and exceptionally selective OT antagonist (pA(2) = 7.26).  相似文献   

9.
The effect of 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl-3,4-dihydro-2(1 H)- quinolinone) (OPC-21268) on vascular action of arginine vasopressin (AVP) was examined in cultured rat vascular smooth muscle cells (VSMC) by the measurement of cytosolic free calcium concentration [( Ca2+]i) and the AVP V1 receptor study. The preincubation of cells with OPC-21268 for 10 min inhibited the AVP-induced mobilization of [Ca2+]i in a dose-dependent manner but did not affect the angiotensin II-induced mobilization of [Ca2+]i. The receptor study revealed that OPC-21268 blocks the binding of AVP to the receptor in VSMC in a similar way to the V1 structural antagonist [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)-2-O-methyltyrosine]AVP: d(CH2)5Tyr(Me)AVP. Lineweaver-Burk plot showed that OPC-21268 is the competitive AVP V1 receptor antagonist. These results therefore indicate that OPC-21268 specifically blocks the vascular action of AVP mediated through the competitive inhibition of AVP binding to the receptors in VSMC.  相似文献   

10.
To explore the intracellular pathways activated by vasopressin receptors, the effects of arginine vasopressin (AVP) and its analogues mediating glycine (Gly)-induced Cl(-) currents (I(Gly)) were examined in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch recording technique. AVP and its analogues inhibited I(Gly) in a concentration-dependent manner. The inhibitory actions of AVP(4-9) (AVP metabolite) and NC-1900 (AVP(4-9) analogue) were reversed by a V(1) receptor antagonist, or pretreatment with 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N', N'-tetraacetic acid. In contrast, these blocking procedures had no effect on the 1-desamino-8-D-AVP (DDAVP; V(2) agonist) action. A V(2) receptor antagonist did not block the inhibitory action of AVP(4-9) or NC-1900, but blocked that of DDAVP. The inhibitory action of AVP was completely blocked by the co-application of the V(1) and V(2) antagonists. The inhibitory action of NC-1900 was not affected by perfusion with a Ca(2+)-free external solution, but was strongly blocked by thapsigargin. The intracellular application of heparin or anti-inositol 1,4,5-triphosphate (IP(3)) also blocked the NC-1900 action. Furthermore, Ca(2+)/calmodulin (CaM) inhibitors blocked the NC-1900 action, while a CaM-dependent kinase II inhibitor and PKC modulators had no effect. 2',5'-Dideoxyadenosine (an adenylate cyclase inhibitor), H-89, and Rp-cAMPS blocked the inhibitory actions of NC-1900 and DDAVP. These results suggest that the activation of the V(1) receptor in the hippocampal neurons induces the production of IP(3), which releases Ca(2+) from the IP(3)-sensitive Ca(2+) storage sites. The Ca(2+) binds to CaM, resulting in the activation of Ca(2+/)CaM-sensitive adenylate cyclases. The activation of protein kinase A through the adenylate cyclase inhibits I(Gly).  相似文献   

11.
Yang J  Chen JM  Liu WY  Song CY  Lin BC 《Regulatory peptides》2006,137(3):156-161
Our previous study has proven that central arginine vasopressin (AVP) plays an important role in antinociception, and pain stimulation raises AVP concentration in the periaqueductal gray (PAG). The nociceptive effect of AVP in PAG was investigated in the rat. The results showed that microinjection of AVP into PAG increased pain threshold, whereas microinjection of V2 receptor antagonist-d(CH2)5[d-Ile2, Ile4, Ala9-NH2]AVP into PAG decreased pain threshold in a dose-dependent manner, but local administration of V1 receptor antagonist-d(CH2)5Tyr(Me)AVP did not change pain threshold; Pain stimulation elevated AVP, Leucine-enkephalin (L-Ek), Methionine-enkephalin (M-Ek) and beta-endorphin (beta-Ep), not dynorphinA(1-13) (DynA(1-13)) concentrations in PAG perfuse liquid; PAG pre-treatment with naloxone, an opiate receptor antagonist or V2 receptor antagonist completely reversed AVP-induced increase in pain threshold, however, PAG pre-treatment with V1 receptor antagonist did not influence this effect of AVP administration. The data suggest that AVP in the PAG, through V2 rather than V1 receptor, regulates antinociception, which progress relates to enkephalin and endorphin.  相似文献   

12.
Using a three-dimensional model of G protein-coupled receptors (GPCR), we have previously succeeded in docking the neurohypophysial hormone arginine-vasopressin (AVP) into the V1a receptor. According to this model, the hormone is completely embedded in the transmembrane part of the receptor. Only the side chain of the Arg residue at position 8 projects outside the transmembrane core of the receptor and possibly interacts with a Tyr residue located in the first extracellular loop at position 115. Residue 8 varies in the two natural neurohypophysial hormones, AVP and oxytocin (OT); similarly, different residues are present at position 115 in the different members of the AVP/OT receptor family. Here we show that Arg8 is crucial for high affinity binding of AVP to the rat V1a receptor. Moreover, when Tyr115 is replaced by an Asp and a Phe, the amino acids naturally occurring in the V2 and in the OT receptor subtypes, the agonist selectivity of the V1a receptor switches accordingly. Our results indicate that the interaction between peptide residue 8 and the receptor residue at position 115 is not only crucial for agonist high affinity binding but also for receptor selectivity.  相似文献   

13.
This study describes the synthesis and some pharmacological properties of eight new analogues of arginine vasopressin (AVP) substituted at position 2 or 3 with cycloleucine (1-aminocyclopentane-1-carboxylic acid, Apc). All new peptides were tested for their pressor, antidiuretic and uterotonic in vitro potency. The Apc3 modification resulted in an almost complete loss of potency in all three tests, which is interpreted as a loss of interaction with all three neurohypophyseal hormone receptors. On the other hand, the Apc2 modification resulted in compounds having differently modified activities (high antidiuretic potency, low and graded pressor activity and either no activity or low oxytocin antagonizing activity in the uterotonic in vitro test) thus selectively altering the interaction with the receptors similar to that of 1-aminocyclohexane-1-carboxylic acid (Acc). The results obtained may be helpful for designing new analogues of arginine vasopressin.  相似文献   

14.
The specificity, the potency, and the duration of action of [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid) 2-(O-methyl)tyrosine]arginine-vasopressin[d(CH2)5Tyr(Me)AVP] to antagonize pressor responses to arginine vasopressin (AVP) was examined in pentobarbital-anaesthetized rats. Injection of the compound (4 micrograms.kg-1 i.v.) prevented pressor responses to i.v. infusions of supramaximal doses of AVP, but not to i.v. infusions of another peptide, angiotensin II (Ag II). The antagonism of AVP persisted for at least 3 h. Since i.v. injection of the compound in the absence of exogenous administration of AVP did not cause any change in the arterial pressure of rats, it appears that the compound is devoid of agonistic pressor activity. The results show that d(CH2)5Tyr(Me)AVP is a potent and a specific antagonist of pressor responses to AVP.  相似文献   

15.
Vasopressin (AVP) receptors present in In-R1-G9 cells, a hamster glucagon-secreting alpha-pancreatic cell line, were characterized using SSR-149415, a selective nonpeptide V1b receptor antagonist, and reference AVP compounds. Binding experiments, using [3H]AVP as a ligand, identified a single population of high-affinity binding sites. SSR-149415 competitively inhibited this binding and exhibited nanomolar and stereospecific affinity for these sites. The affinity of various AVP/oxytocin ligands confirmed a V1b binding profile. In functional studies, AVP was a potent stimulant in inducing intracellular Ca2+ increase, glucagon secretion, and cell proliferation. These effects were fully antagonized by SSR-149415 with a nanomolar potency, whereas its diasteroisomer as well as two selective V1a and V2 receptor antagonists were much less potent. Additionally, the order of potency of AVP agonists and antagonists was in agreement with V1b-mediated effects. By RT-PCR, we confirmed the presence of V1b receptor mRNA in both In-R1-G9 cells and in human pancreas. The distribution pattern of V1b receptors investigated in human pancreas by immunohistochemistry showed strong labeling in islets of Langerhans, and colocalization studies indicated that this receptor was expressed in alpha-glucagon, beta-insulin, and somatostatin pancreatic cells. Thus, in In-R1-G9 cells, AVP mediates intracellular Ca2+ increase, glucagon secretion, and cell proliferation by activating V1b receptors, and these effects are potently antagonized by SSR-149415. Moreover, the presence of V1b receptors also found in human Langerhans islets could suggest hormonal control of AVP in human pancreas.  相似文献   

16.
Arginine-vasopressin (AVP) has been proposed to be involved in the modulation of acid-base transporters; however, the nature of the mechanisms underlying AVP direct action on intracellular pH (pH(i)) in the cortical collecting duct (CCD) is not yet clearly defined. The aim of the present study was to elucidate which are the proteins implicated in AVP modulation of pH(i), as well as the receptors involved in these responses using a CCD cell line (RCCD(1)); pH(i) was monitored with the fluorescent dye BCECF in basal conditions and after stimulation with basolateral 10(-8) M AVP. Specific V1- or V2-receptor antagonists were also used. RT-PCR studies demonstrated that RCCD(1) cells express V1a and V2 receptors. Functional studies showed that while V2-receptor activation induced a biphasic response (alkalinization-acidification), V1-receptor activation resulted in an intracellular acidification. The V2-mediated alkalinization phase involves the activation of basolateral NHE-1 isoform of the Na(+)/H(+) exchanger while in the acidification phase CFTR is probably implicated. On the other hand, V1-mediated acidification was due to activation of a Cl(-)/HCO(3)(-) exchanger. We conclude that in RCCD(1) cells AVP selectively activates, via a complex of V1 and V2 receptor-mediated actions, different ion transporters linked to pH(i) regulation which might have physiological implications.  相似文献   

17.
[Arg8]Vasopressin (AVP) has an antilipolytic action on adipocytes, but little is known about the mechanisms involved. Here, we examined the involvement of the V1a receptor in the antilipolytic effect of AVP using V1a receptor-deficient (V1aR-/-) mice. The levels of blood glycerol were increased in V1aR-/- mice. The levels of ketone bodies, such as acetoacetic acid and 3-hydroxybutyric acid, the products of the lipid metabolism, were increased in V1aR-/- mice under a fasting condition. Triacylglyceride and free fatty acid levels in blood were decreased in V1aR-/- mice. Furthermore, measurements with tandem mass spectrometry determined that carnitine and acylcarnitines in serum, the products of beta-oxidation, were increased in V1aR-/- mice. Most acylcarnitines were increased in V1aR-/- mice, especially in the case of 2-carbon (C2), C10:1, C10, C14:1, C16, C18:1, and hydroxy-18:1-carbon (OH-C18:1)-acylcarnitines under feeding rather than under fasting conditions. The analysis of tissue C2-acylcarnitine level showed that beta-oxidation was promoted in muscle under the feeding condition and in liver under the fasting condition. An in vitro assay using brown adipocytes showed that the cells of V1aR-/- mice were more sensitive to isoproterenol for lipolysis. These results suggest that the lipid metabolism is enhanced in V1aR-/- mice. The cAMP level was enhanced in V1aR-/- mice in response to isoproterenol. The phosphorylation of Akt by insulin stimulation was reduced in V1aR-/- mice. These results suggest that insulin signaling is suppressed in V1aR-/- mice. In addition, the total bile acid, taurine, and cholesterol levels in blood were increased, and an enlargement of the cholecyst was observed in V1aR-/- mice. These results indicated that the production of bile acid was enhanced by the increased level of cholesterol and taurine. Therefore, these results indicated that AVP could modulate the lipid metabolism by the antilipolytic action and the synthesis of bile acid via the V1a receptor.  相似文献   

18.
The longitudinal muscle of isolated rat ileum is a sensitive bioassay suitable for testing compounds with antagonistic effects on the B(1) receptor. Bradykinin analogues with replacement of proline by alkyl-substituted phenylalanine at position 7 are effective on this receptor as entire molecules and have a stronger antagonistic effect than on the B(2) receptor. A corresponding desArg(9)-compound has a specific effect on the B(1) receptor and a very high antagonistic potency. [LNMPhe(2)]bradykinin as a compound without any replacement at position 7 or 8 shows antagonistic activity as well.  相似文献   

19.
Ovine corticotropin releasing factor (oCRF-41) and AVP act synergistically to stimulate pituitary ACTH secretion. In the present study we have investigated whether the effect of AVP, either in the presence or in the absence of oCRF-41 (0.5 nmol/l), could be blocked by V1 (pressor)-antagonists. Furthermore, oxytocin, and [1-deamino,8-D-arginine] vasopressin (dDAVP) were tested for their ability to release ACTH. All experiments were carried out in vitro, using segments of rat anterior pituitary glands. The V1-antagonist [1-deamino,penicillamine(o-methyl-tyrosine)]AVP inhibited ACTH release induced by AVP or AVP + oCRF-41. However, it also had some agonistic activity which was more pronounced in the presence of oCRF-41. An equally potent V1-antagonist, [1-beta-mercapto-beta, beta-cyclopentamethyleneproprionic acid (o-methyl-tyrosine)]AVP, failed to inhibit AVP-stimulated ACTH secretion, and also had weak agonist potency. The relatively selective V2 (antidiuretic)-agonist dDAVP was 20-30 fold less potent than AVP. Oxytocin, a weak V1- and V2-agonist was only 4-8 fold less potent than AVP. These data are compatible with the suggestion that AVP receptors on pituitary corticotrope cells are neither classical V1- nor V2-receptors.  相似文献   

20.
We examined the effects of arginine-vasopressin (AVP) C-terminal fragment 4-9, which facilitates learning and memory, on the extracellular acetylcholine (ACh) release in hippocampus of freely-moving rats using the microdialysis technique. Following administration of AVP4-9, p-Glu-Asn-Cys[Cys]-Pro-Arg-Gly-NH2, through the dialysis probe into the hippocampus, ACh levels in dialysates from the hippocampus increased markedly in dose and time dependent manner at 2-2.5 and 2.5-3 hr. AVP1-9, the parent peptide, has a similar enhancing effect on ACh release as AVP4-9. Stimulated ACh release by AVP4-9 was significantly inhibited by V1-selective receptor antagonist ([1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-(O-methyl)-tyrosine]AVP), but not by V2-selective antagonist ([1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-D-Ile, 4-Ile]AVP). From these observations, it is demonstrated that AVP4-9 stimulates the ACh release in rat hippocampus via mediating V1-like vasopressin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号