首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many flavoproteins are non-covalent complexes between FMN and an apoprotein. To understand better the stability of flavoproteins, we have studied the energetics of the complex between FMN and the apoflavodoxin from Anabaena PCC 7119 by a combination of site-directed mutagenesis, titration calorimetry, equilibrium binding constant determinations, and x-ray crystallography. Comparison of the strength of the wild type and mutant apoflavodoxin-FMN complexes and that of the complexes between wild type apoflavodoxin and shortened FMN analogues (riboflavin and lumiflavin) allows the dissection of the binding energy into contributions associated with the different parts of the FMN molecule. The estimated contribution of the phosphate is greatest, at 7 kcal mol(-1); that of the isoalloxazine is of around 5-6 kcal mol(-1) (mainly due to interaction with Trp-57 and Tyr-94 in the apoprotein) and the ribityl contributes least: around 1 kcal mol(-1). The stabilization of the complex is both enthalpic and entropic although the enthalpy contribution is dominant. Both the phosphate and the isoalloxazine significantly contribute to the enthalpy of binding. The ionic strength does not have a large effect on the stability of the FMN complex because, although it weakens the phosphate interactions, it strengthens the isoalloxazine-protein hydrophobic interactions. Phosphate up to 100 mM does not affect the strength of the riboflavin complex, which suggests the isoalloxazine and phosphate binding sites may be independent in terms of binding energy. Interestingly, we find crystallographic evidence of flexibility in one of the loops (57-62) involved in isoalloxazine binding.  相似文献   

2.
From the leaves of Myrica gale 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone has been isolated. The fruits yielded 2′-hydroxy-4′,6′-dimethoxy-3′-methyldihydrochalcone. The constitutions were deduced from spectroscopic data and confirmed by synthesis.  相似文献   

3.
A new optically active flavan aglucone, 7-hydroxy-3′,4′-methylenedioxyflavan, and its 7-glucoside have been isolated from the bulbs of Zephyranthes flava, collected at flowering. Additionally, two known flavans, 7,4′-dihydroxy-3′-methoxyflavan and 7-methoxy-2′-hydroxy-4′,5′-methylenedioxyflavan, have been isolated for the first time from this species. The structures of these flavans have been established by comprehensive analyses (UV, IR, 1H NMR, 13C NMR, mass spectrometry, [α]D) of the compounds and their acetates, and also by chemical correlation.  相似文献   

4.
DNA newly synthesized in UV irradiated Escherichia coli B/r Hcr+ was 2 min pulse-labeled at various periods, then denatured and analysed by sucrose gradient centrifugation either in neutral or in alkaline conditions. Data indicate that in DNA of damaged cells alkali-labile sites are produced. In cells saturated with inducible proteins production of alkali-labile sites disappears in ~1 h. In the absence of inducible proteins production of alkali-labile sites continues.  相似文献   

5.
Flavodoxins are bacterial electron transport proteins whose redox competence is due to the presence of a tightly but noncovalently bound FMN molecule. While the thermodynamics of the complex are understood, the mechanism of association between the apoflavodoxin and the redox cofactor is not so clear. We investigate here the mechanism of FMN binding to the apoflavodoxin from Helicobacter pylori, an essential protein that is being used as a target to develop antimicrobials. This flavodoxin is structurally peculiar as it lacks the typical bulky residue interacting with the FMN re face but bears instead a small alanine. FMN binding is biphasic, regardless of the presence of phosphate molecules in solution, while riboflavin binding takes place in a single step, the rate constant of which coincides with the fast phase of FMN binding. A mutational study at the isoalloxazine and phosphate subsites for FMN binding clearly indicates that FMN association is always limited by interaction with the isoalloxazine subsite because mutating residues that interact with the phosphate moiety of FMN in the native complex hardly changes the observed rate constants and amplitudes. In contrast, replacing tyr92, which interacts with the isoalloxazine, greatly lowers the rate constants. Our analysis indicates that the two FMN binding phases observed are related neither with alternative or sequential interaction with the two binding subsites nor with the presence of bound phosphate. It is possible that they reflect the intrinsic conformational heterogeneity of the apoflavodoxin ensemble.  相似文献   

6.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and γ-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5′-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme “marker” for the renal basal-lateral membrane.  相似文献   

7.
The intracellular level of guanosine 3',5'-monophosphate (cGMP) has been measured in Walker carcinoma cells in tissue culture after treatment with various alkylating agents. At concentrations which caused a rise in the level of adenosine 3',5'-monophosphate (cAMP) chlorambucil and 5-(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954) produced only a small (35%) elevation of cGMP, while merophan had no such effect. This suggests that any effect of cAMP will not be outweighed by an equivalent rise in cGMP. Sepcific cytosolic binding of cGMP decreased with increasing resistance of Walker cells to alkylating agents, while the dissociation constant, KD, for binding increased. This was also observed with cAMP binding which suggests that the same protein in responsible for binding both nucleotides.  相似文献   

8.
Two dihydrochalcones, 2′,6′-dihydroxy-4′-methoxydihydrochalcone and 2,4′,6′-trihydroxydihydrochalcone have been isolated from leaves of Lindera umbellata.  相似文献   

9.
Ordered transcription of RNA tumor virus genomes.   总被引:43,自引:0,他引:43  
The crystal structure of sodium adenylyl-3′,5′-uridine (ApU) hexahydrate has been determined by X-ray diffraction procedures and refined to an R factor of 0.057. ApU crystallizes with two molecules per asymmetric unit in a monoclinic unit cell, space group P21, with cell dimensions: a = 18.025, b = 17.501, c = 9.677 A?and β = 99.45 °. The two independent molecules of ApU form a small segment of right-handed antiparallel double-helical RNA in the crystal, with Watson-Crick base-pairing between adenine and uracil. This is the first time that this Watson-Crick base-pair has been seen unambiguously at atomic resolution and it is also the first time that a nucleic acid fragment with double-helical symmetry has been seen at atomic resolution. The distance between the C1′ atoma of the adenine-uracil base-pair is slightly shorter than the analogous distance seen in guanine-cytosine base-pairs. The bases in each strand are heavily stacked. One sodium cation binds to the phosphates, as expected; however, the other sodium cation binds on the dyad axis in the minor groove of the double helix. It is co-ordinated directly to the two uracil carbonyl groups which protrude into the minor groove and is shielded from the nearest phosphates by a shell of water. This binding appears to be sequence-specific for ApU. One of the adenines also forms a pair of hydrogen bonds to a nearby ribose, utilizing N6 and N7. The 12 water molecules per double-helical fragment are all part of the first co-ordination shell. The ions and the symmetry of the double-helical fragment are the major organizing elements of the solvent region.  相似文献   

10.
We have studied the mode of action of three hormones (angiotensin, vasopressin and phenylephrine, an α-adrenergic agent) which promote liver glycogenolysis in a cyclic AMP-independent way, in comparison with that of glucagon, which is known to act essentially via cyclic AMP. The following observations were made using isolated rat hepatocytes: (a) In the normal Krebs-Henseleit bicarbonate medium, the hormones activated glycogen phosphorylase (EC 2.4.1.1) to about the same degree. In contrast to glucagon, the cyclic AMP-independent hormones did not activate either protein kinase (EC 2.7.1.37) or phosphorylase b kinase (EC 2.7.1.38). (b) The absence of Ca2+ from the incubation medium prevented the activation of glycogen phosphorylase by the cyclic AMP-independent agents and slowed down that induced by glucagon. (c) The ionophore A 23187 produced the same degree of activation of glycogen phosphorylase, provided that Ca2+ was present in the incubation medium (d) Glucagon, cyclic AMP and three cyclic AMP-independent hormones caused an enhanced uptake of 45Ca; it was verified that concentrations of angiotensin and of vasopressin known to occur in haemorrhagic conditions were able to produce phosphorylase activation and stimulate 45Ca uptake. (e) Appropriate antagonists (i.e. phentolamine against phenylephrine and an angiotensin analogue against angiotensin) prevented both the enhanced 45Ca uptake and the phosphorylase activation.We interpret our data in favour of a role of calcium (1) as the second messenger in liver for the three cyclic AMP-independent glycogenolytic hormones and (2) as an additional messenger for glucagon which, via cyclic AMP, will make calcium available to the cytoplasm either from extracellular or from intracellular pools. The target enzyme for Ca2+ is most probably phosphorylase b kinase.  相似文献   

11.
The identification of taxifolin and structure elucidation of cedeodarin (6-methyltaxifolin), dihydromyricetin, cedrin (6-methyldihydromyricetin) and cedrinoside from cedar wood are described.  相似文献   

12.
Two new highly oxygenated flavones, were isolated from aerial parts of Ageratum houstonianum. Their structures were established as 3′-hydroxy-5,6,7,8,2′,4′,5′-heptamethoxyflavone and 5,3′-dihydroxy-6,7,8,2′,4′,5′-hexamethoxyflavone on the basis of spectral data and chemical degradation. The structure of the latter compound was confirmed by X-ray analysis.  相似文献   

13.
Chloroform extraction of Eupatorium leucolepis gave the new flavones 3′-hydroxy-5,6,7,8,4′,5′-hexamethoxyflavone, 4′-hydroxy-5,6,7,8,3′,5  相似文献   

14.
Eight methoxyflavones were isolated and identified from the peel of calamondin. Citromitin and 5-O-desmethylcitromitin are actually nobiletin and 5-O-desmethylnobiletin, respectively. 5,6,7,8,3′,4′-Hexamethoxyflavanone and 5-hydroxy-6,7,8,3′,4′-pentamethoxyflavanone are not constituents of calamondin, although previously reported.  相似文献   

15.
Isolation and structural elucidation of prune constituents were performed and total 10 compounds were determined by NMR and MS analyses. A novel compound was identified to be 2-(5-hydroxymethyl-2′,5′-dioxo-2′,3′,4′,5′-tetrahydro-1′H-1,3′-bipyrrole)carbaldehyde, and 7 phenolic compounds were isolated from prunes for the first time. In addition, antioxidant activity of them was evaluated on the basis of the oxygen radical absorbance capacity (ORAC).  相似文献   

16.
The role of metabolic activation in the binding of polychlorinated biphenyls (PCBs) to cellular macromolecules was investigated in vivo by comparing the relative binding of 2,4,5,2′,4′,5′-[U-14C]hexachlorobiphenyl (2,4,5), a slowly metabolized PCB, with that of 2,3,6,2′,3′,6′-[U-14C]hexachlorobiphenyl (2,3,6), a rapidly metabolized PCB, and the appropriate controls. Each hexachlorobiphenyl was administered to mice, orally for 5 days (7.28 mg/kg/day). Following the dosing schedule, animals were killed at 1, 5 and 8 days. The concentration of each PCB was determined in liver, muscle and kidney and in purified macromolecules isolated from those tissues. The concentration of 2,4,5 was consistently higher than the concentration of 2,3,6 in all tissues studied. However, the amount of 2,3,6 bound to the purified macromolecules was consistently at least one order of magnitude greater than that of 2,4,5. The greatest binding was observed in RNA followed by protein and DNA, respectively. The purity of the macromolecules and the presence of PCB-derived radioactivity at the monomer level were confirmed. This is the first report of 14C-labeled PCB being bound to purified RNA, DNA, and proteins isolated from the tissues of animals treated in vivo. The binding is thought to be covalent and to be the result of metabolic activation.  相似文献   

17.
18.
The distribution of sarcophytol-A in the Sarcophyton genus was investigated in seven samples belonging to S. glaucum (3 samples), S. infundibulifurme (2 samples), S. crassocaule (1 sample) and S. trocheliophorum (1 sample) that were collected on Ishigaki Island in Okinawa Prefecture. Sarcophytol-A was present in one sample each of S. glaucum and S. infundibulifurme. This study indicates that the composition of cembranoids in the Sarcophyton genus is not related with the respective species, but with the individual samples collected.  相似文献   

19.
2′,2′-Difluoro-2′-deoxycytidine (dFdC, gemcitabine) is a cytidine analogue active against several solid tumor types, such as ovarian, pancreatic and non-small cell lung cancer. The compound has a complex mechanism of action. Because of the structural similarity of one metabolite of dFdC, dFdUMP, with the natural substrate for thymidylate synthase (TS) dUMP, we investigated whether dFdC and its deamination product 2′,2′-difluoro-2′-deoxyuridine (dFdU) would inhibit TS. This study was performed using two solid tumor cell lines: the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000. The specific TS inhibitor Raltitrexed (RTX) was included as a positive control. Using the in situ TS activity assay measuring the intracellular conversion of [5-3H]-2′-deoxyuridine or [5-3H]-2′-deoxycytidine to dTMP and tritiated water, it was observed that dFdC and dFdU inhibited TS. In A2780 cells after a 4 h exposure to 1 μM dFdC tritium release was inhibited by 50% but did not increase after 24 h, Inhibition was also observed following dFdU at 100 μM. No effect was observed in the dFdC-resistant cell line AG6000; in this cell line only RTX had an inhibitory effect on TS activity. In the A2780 cell line RTX inhibited TS in a time dependent manner. In addition, DNA specific compounds such as 2′-C-cyano-2′-deoxy-1-beta-D-arabino-pentafuranosylcytosine and aphidicoline were utilized to exclude DNA inhibition mediated down regulation of the thymidine kinase.Inhibition of the enzyme resulted in a relative increase of mis-incorporation of [5-3H]-2′-deoxyuridine into DNA. In an attempt to elucidate the mechanism of in situ TS inhibition the ternary complex formation and possible inhibition in cellular extracts of A2780 cells, before and after exposure to dFdC, were determined. With the applied methods no proof for formation of a stable complex was found. In simultaneously performed experiments with 5FU such a complex formation could be demonstrated. However, using purified TS it was demonstrated that dFdUMP and not dFdCMP competitively inhibited TS with a Ki of 130 μM, without ternary complex formation. In conclusion, in this paper we reveal a new target of dFdC: thymidylate synthase.  相似文献   

20.
From the bud exudates of Gardenia cramerii and G. fosbergii, two species endemic to Sri Lanka, a new flavonoid with an unusual B-ring oxidation pattern, 5,5′-dihydroxy-6,7,2′,3′-tetramethoxyflavone, was characterized. Two other rare flavonoids, 5,3′,5′-trihydroxy-3,6,7,4′-tetramethoxyflavone and 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone were also isolated from both Gardenia species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号