首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultural lineages are based on learned social traditions that are stable for several generations. When cultural lineages also reflect common ancestry and/or are shared by individuals that live together they are called clans. The existence of clans among killer whales has been previously proposed but has not been confirmed. Here, we show that clans exist among resident type killer whales, Orcinus orca, in southern Alaska. Resident killer whales live in stable matrilines from which emigration of either sex has not been observed. Matrilines that associate regularly (≥50% observation time) are called pods. Pods are believed to consist of closely related matrilines and share a unique repertoire of discrete call types. Pods that share parts of their repertoire form what Ford (1991, Canadian Journal of Zoology,69, 1454-1483) called an acoustic clan. Here, we identified discrete call types of seven pods from southern Alaska, using a method based on human discrimination of distinct aural and visual (spectrogram) differences. Mitochondrial DNA of members of each pod was also analysed. The repertoires of the seven pods were compared and two acoustically distinct groups of pods were identified. Each group was monomorphic for a different mitochondrial D-loop haplotype. Nevertheless, pods from different clans associated frequently. It thus appears that the acoustic similarities within groups, which we presume to be cultural, reflect common ancestry, and that these groups therefore meet the above definition of clans. We also argue that a combination of cultural drift and selection are the main mechanisms for the maintenance of clans. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

2.
Common ancestry is a central feature of the theory of evolution, yet it is not clear what “common ancestry” actually means; nor is it clear how it is related to other terms such as “the Tree of Life” and “the last universal common ancestor”. I argue these terms describe three distinct hypotheses ordered in a logical way: that there is a Tree of Life is a claim about the pattern of evolutionary history, that there is a last universal common ancestor is an ontological claim about the existence of an entity of a specific kind, and that there is universal common ancestry is a claim about a causal pattern in the history of life. With these generalizations in mind, I argue that the existence of a Tree of Life entails a last universal common ancestor, which would entail universal common ancestry, but neither of the converse entailments hold. This allows us to make sense of the debates surrounding the Tree, as well as our lack of knowledge about the last universal common ancestor, while still maintaining the uncontroversial truth of universal common ancestry.  相似文献   

3.
The evolutionary origins of the salmonidfishes, whether in freshwater or the sea, havebeen debated for centuries. Early viewsfavoured a group of marine ancestry invadingfreshwaters; more recently, there was a shifttowards a freshwater ancestry, on grounds thata return to freshwater to spawn indicates theancestral biome. Salmonids are widely believedto share an ancient common ancestry with thenorthern hemisphere Osmeridae and southernhemisphere Retropinnidae and Galaxiidae. Salmonidae are diadromous, as are Osmeridae,Retropinnidae and Galaxiidae. This suggeststhat diadromy is an ancient behavioralphenomenon across all these groups, that theshared common ancestry of these groups was alsodiadromous, and that the ancestry of Salmonidaewas neither marine nor freshwater, but wasamongst diadromous fishes. This begs thequestion of whether this common ancestor wasmarine or freshwater, a question for which ananswer seems likely to be elusive.  相似文献   

4.
All life on earth descended from a single common ancestor that existed several billion years ago; thus, any pair of organisms will have had a common ancestor at some point in their history. This concept is fundamental to an understanding of evolution and phylogeny. Developing an understanding of this concept is an important goal of evolution education and a part of most high school and college biology curricula. This study examines freshman undergraduate biology majors’ understanding and application of the concept of common ancestry. We used a survey that asked students to provide a brief definition of common ancestry and to rate their confidence that different pairs of organisms shared a common ancestor. Our results show that, although many students in our sample could give a satisfactory definition of common ancestry, the overwhelming majority failed to apply their definitions correctly when assessing the likelihood that the pairs of organisms shared common ancestors. Instead, we found that these students do not treat common ancestry as a binary (yes/no) trait, but instead see it as a continuum from less probable to more probable. These students are more likely to think that closely related organisms have a common ancestor than those that are more distantly related and that humans are less likely to be connected to common ancestors than nonhuman organisms. This pattern is highly consistent from student to student and has important implications for teaching evolution.  相似文献   

5.
Homoplasy and homology: dichotomy or continuum?   总被引:4,自引:0,他引:4  
Homology is the presence of the same feature in two organisms whose most recent common ancestor also possessed the feature. I discuss the bases on which we can tell that two features being compared share sufficient elements of sameness to allow them to be treated as homologous and therefore to be legitimately compared with one another in a way that informs comparative, evolutionary, and phylogenetic analysis. To do so, I discuss the relationship(s) between homology and homoplasy to conclude that we are dealing neither with a dichotomy between homoplasy as parallelism/convergence and homology as common descent nor with a dichotomy of homoplasy as the interrupted presence of the character in a lineage and homology as the continuous presence of the character. Rather, we are dealing with common descent with varying degrees of modification. Homoplasy and homology are not dichotomies but the extremes of a continuum, reflecting deep or more recent shared ancestry based on shared cellular mechanisms and processes and shared genes and gene pathways and networks. The same genes can be used to initiate the development of homoplastic and homologous structures. Consequently, structures may be lost but their developmental bases retained, providing the potential for homoplasy. It should not be surprising that similar features persist when a feature is present in the nearest common ancestor (homology). Neither should it be surprising to find that different environments or selective pressures can trigger the reappearance of similar features in organisms that do not share a recent common ancestor (homoplasy).  相似文献   

6.

Background  

Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample.  相似文献   

7.
Accurate inference of the dates of common ancestry among species forms a central problem in understanding the evolutionary history of organisms. Molecular estimates of divergence time rely on the molecular evolutionary prediction that neutral mutations and substitutions occur at the same constant rate in genomes of related species. This underlies the notion of a molecular clock. Most implementations of this idea depend on paleontological calibration to infer dates of common ancestry, but taxa with poor fossil records must rely on external, potentially inappropriate, calibration with distantly related species. The classic biological models Caenorhabditis and Drosophila are examples of such problem taxa. Here, I illustrate internal calibration in these groups with direct estimates of the mutation rate from contemporary populations that are corrected for interfering effects of selection on the assumption of neutrality of substitutions. Divergence times are inferred among 6 species each of Caenorhabditis and Drosophila, based on thousands of orthologous groups of genes. I propose that the 2 closest known species of Caenorhabditis shared a common ancestor <24 MYA (Caenorhabditis briggsae and Caenorhabditis sp. 5) and that Caenorhabditis elegans diverged from its closest known relatives <30 MYA, assuming that these species pass through at least 6 generations per year; these estimates are much more recent than reported previously with molecular clock calibrations from non-nematode phyla. Dates inferred for the common ancestor of Drosophila melanogaster and Drosophila simulans are roughly concordant with previous studies. These revised dates have important implications for rates of genome evolution and the origin of self-fertilization in Caenorhabditis.  相似文献   

8.
Previous genetic studies have suggested a history of sub-Saharan African gene flow into some West Eurasian populations after the initial dispersal out of Africa that occurred at least 45,000 years ago. However, there has been no accurate characterization of the proportion of mixture, or of its date. We analyze genome-wide polymorphism data from about 40 West Eurasian groups to show that almost all Southern Europeans have inherited 1%-3% African ancestry with an average mixture date of around 55 generations ago, consistent with North African gene flow at the end of the Roman Empire and subsequent Arab migrations. Levantine groups harbor 4%-15% African ancestry with an average mixture date of about 32 generations ago, consistent with close political, economic, and cultural links with Egypt in the late middle ages. We also detect 3%-5% sub-Saharan African ancestry in all eight of the diverse Jewish populations that we analyzed. For the Jewish admixture, we obtain an average estimated date of about 72 generations. This may reflect descent of these groups from a common ancestral population that already had some African ancestry prior to the Jewish Diasporas.  相似文献   

9.
Tetushkin EIu 《Genetika》2011,47(11):1451-1472
The supplementary historical discipline genealogy is also a supplementary genetic discipline. In its formation, genetics borrowed from genealogy some methods of pedigree analysis. In the 21th century, it started receiving contribution from computer-aided genealogy and genetic (molecular) genealogy. The former provides novel tools for genetics, while the latter, which employing genetic methods, enriches genetics with new evidence. Genealogists formulated three main laws ofgenealogy: the law of three generations, the law of doubling the ancestry number, and the law of declining ancestry. The significance and meaning of these laws can be fully understood only in light of genetics. For instance, a controversy between the exponential growth of the number of ancestors of an individual, i.e., the law of doubling the ancestry number, and the limited number of the humankind is explained by the presence of weak inbreeding because of sibs' interference; the latter causes the pedigrees' collapse, i.e., explains also the law of diminishing ancestry number. Mathematic modeling of pedigrees' collapse presented in a number of studies showed that the number of ancestors of each individual attains maximum in a particular generation termed ancestry saturated generation. All representatives of this and preceding generation that left progeny are common ancestors of all current members of the population. In subdivided populations, these generations are more ancient than in panmictic ones, whereas in small isolates and social strata with limited numbers of partners, they are younger. The genealogical law of three generations, according to which each hundred years contain on average three generation intervals, holds for generation lengths for Y-chromosomal DNA, typically equal to 31-32 years; for autosomal and mtDNA, this time is somewhat shorter. Moving along ascending lineas, the number of genetically effective ancestors transmitting their DNA fragment to descendants increases far slower than the number of common ancestors, because the time to the nearest common ancestor is proportional to log2N, and the time to genetically effective ancestor, to N, where N is the population size. In relatively young populations, the number of genetically effective ancestors does not exceed the number of recombination hot spots, which is equal to 25000-50000. In ancient African populations with weaker linkage disequilibrium, their number may be higher. In genealogy, the degree of kinship is measured by the number of births separating the individuals under comparison, and in genetics, by Wright's coefficients of relationship (R). Genetic frames of a "large family" are limited by the average genomic differences among the members of the human population, which constitute approximately 0.1%. Conventionally it can be assumed that it is limited by relatives, associated with the members of the given nuclear family by the 7th degree of relatedness (R approximately 0.78%). However, in the course of the HapMap project it was established that 10-30% of pairs of individuals from the same population have at least one common genome region, which they inherited from a recent common ancestor. A nuclear family, if it is not consanguinous, unites two lineages, and indirectly, a multitude of them, constituting a "suprafamily" equivalent to a population. Some problems ofgenealogy and related historical issues can be resolved only with the help of genetics. These problems include identification of "true" and "false" Rurikids and the problem of continuity of the Y-chromosomal lineage of the Romanov dynasty. On the other hand, computer-aided genealogy and molecular genealogy seem to be promising in resolving genetic problems connected to recombination and coalescence ofgenomic regions.  相似文献   

10.
司马光家族延续了上千年,家谱记载较为完整,为谱牒学、历史学、遗传学等人文和自然学科的跨学科研究提供了较好的材料。本研究对11个声称为司马光后代的家族进行了Y-STR分型,结果表明有5个家族的STR单倍型彼此之间十分接近,同属下游单倍群O1a1a1a1a1a-F492+,F656-。因此,我们推断司马光家族的父系遗传类型极有可能属于此单倍群。同时,我们使用BATWING法逐层计算所有支系的最近共祖时间,其结果与根据谱牒资料构建的家族谱系图非常吻合。本项研究为从遗传学角度研究现代家族的父系谱系和重构家族谱牒材料提供了参考,并将有助于进一步研究汉代史学家司马迁家族以及西晋司马王室的源流。  相似文献   

11.
Molecular phylogenies support a common ancestry between animals (Metazoa) and Fungi, but the evolutionary descent of the Metazoa from single-celled eukaryotes (protists) and the nature and taxonomic affiliation of these ancestral protists remain elusive. We addressed this question by sequencing complete mitochondrial genomes from taxonomically diverse protists to generate a large body of molecular data for phylogenetic analyses. Trees inferred from multiple concatenated mitochondrial protein sequences demonstrate that animals are specifically affiliated with two morphologically dissimilar unicellular protist taxa: Monosiga brevicollis (Choanoflagellata), a flagellate, and Amoebidium parasiticum (Ichthyosporea), a fungus-like organism. Statistical evaluation of competing evolutionary hypotheses confirms beyond a doubt that Choanoflagellata and multicellular animals share a close sister group relationship, originally proposed more than a century ago on morphological grounds. For the first time, our trees convincingly resolve the currently controversial phylogenetic position of the Ichthyosporea, which the trees place basal to Choanoflagellata and Metazoa but after the divergence of Fungi. Considering these results, we propose the new taxonomic group Holozoa, comprising Ichthyosporea, Choanoflagellata, and Metazoa. Our findings provide insight into the nature of the animal ancestor and have broad implications for our understanding of the evolutionary transition from unicellular protists to multicellular animals.  相似文献   

12.
We demonstrated that "orchid mycorrhiza," a specialized mycorrhizal type, appeared in the common ancestor of the largest plant family Orchidaceae and that the fungal partner shifted from Glomeromycota to a particular clade of Basidiomycota in association with this character evolution. Several unique mycorrhizal characteristics may have contributed to the diversification of the family. However, the origin of orchid mycorrhiza and the diversity of mycobionts across orchid lineages still remain obscure. In this study, we investigated the mycorrhizae of five Apostasia taxa, members of the earliest-diverging clade of Orchidaceae. The results of molecular identification using nrDNA ITS and LSU regions showed that Apostasia mycorrhizal fungi belong to families Botryobasidiaceae and Ceratobasidiaceae, which fall within the order Cantharellales of Basidiomycota. Most major clades in Orchidaceae also form mycorrhizae with members of Cantharellales, while the sister group and other closely related groups to Orchidaceae (i.e., Asparagales except for orchids and the "commelinid" families) ubiquitously form symbioses with Glomeromycota to form arbuscular mycorrhizae. This pattern of symbiosis indicates that a major shift in fungal partner occurred in the common ancestor of the Orchidaceae.  相似文献   

13.
How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past.  相似文献   

14.
Homologous long segments along the genomes of close or remote relatives that are identical by descent (IBD) from a common ancestor provide clues for recent events in human genetics. We set out to extensively map such IBD segments in large cohorts and investigate their distribution within and across different populations. We report analysis of several data sets, demonstrating that IBD is more common than expected by na?ve models of population genetics. We show that the frequency of IBD pairs is population dependent and can be used to cluster individuals into populations, detect a homogeneous subpopulation within a larger cohort, and infer bottleneck events in such a subpopulation. Specifically, we show that Ashkenazi Jewish individuals are all connected through transitive remote family ties evident by sharing of 50 cM IBD to a publicly available data set of less than 400 individuals. We further expose regions where long-range haplotypes are shared significantly more often than elsewhere in the genome, observed across multiple populations, and enriched for common long structural variation. These are inconsistent with recent relatedness and suggest ancient common ancestry, with limited recombination between haplotypes.  相似文献   

15.
The insulin minisatellite (INS VNTR) associates with susceptibility to a variety of diseases. We have developed a high-resolution system for analyzing variant repeat distributions applicable to all known minisatellite alleles, irrespective of size, which allows lineages of related alleles to be identified. This system has previously revealed extremely low structural diversity in the minisatellite among northern Europeans from the United Kingdom, with all alleles belonging to one of only three highly diverged lineages called "I," "IIIA," and "IIIB." To explore the origins of this remarkably limited lineage diversity, we have characterized an additional 780 alleles from three non-African and three African populations. In total, 22 highly diverged lineages were identified, with structural intermediates absent from extant populations, suggesting a bottleneck within the ancestry of all humans. The difference between levels of diversity in Africans and non-Africans is unusually large, with all 22 lineages identified in Africa compared with only three lineages seen not only in the United Kingdom but also in the other non-African populations. We also find evidence for overrepresentation of lineage I chromosomes in non-Africans. These data are consistent with a common out-of-Africa origin and an unusually tight bottleneck within the ancestry of all non-African populations, possibly combined with differential and positive selection for lineage I alleles in non-Africans. The important implications of these data for future disease-association studies are discussed.  相似文献   

16.
Pastoral and farmer populations, who have coexisted in Central Asia since the fourth millennium B.C., present not only different lifestyles and means of subsistence but also various types of social organization. Pastoral populations are organized into so-called descent groups (tribes, clans, and lineages) and practice exogamous marriages (a man chooses a bride in a different lineage or clan). In Central Asia, these descent groups are patrilineal: The children are systematically affiliated with the descent groups of the father. By contrast, farmer populations are organized into families (extended or nuclear) and often establish endogamous marriages with cousins. This study aims at better understanding the impact of these differences in lifestyle and social organization on the shaping of genetic diversity. We show that pastoral populations exhibit a substantial loss of Y chromosome diversity in comparison to farmers but that no such a difference is observed at the mitochondrial-DNA level. Our analyses indicate that the dynamics of patrilineal descent groups, which implies different male and female sociodemographic histories, is responsible for these sexually-asymmetric genetic patterns. This molecular signature of the pastoral social organization disappears over a few centuries only after conversion to an agricultural way of life.  相似文献   

17.
In this paper, we show how to construct the genealogy of a sample of genes for a large class of models with selection and mutation. Each gene corresponds to a single locus at which there is no recombination. The genealogy of the sample is embedded in a graph which we call theancestral selection graph. This graph contains all the information about the ancestry; it is the analogue of Kingman's coalescent process which arises in the case with no selection. The ancestral selection graph can be easily simulated and we outline an algorithm for simulating samples. The main goal is to analyze the ancestral selection graph and to compare it to Kingman's coalescent process. In the case of no mutation, we find that the distribution of the time to the most recent common ancestor does not depend on the selection coefficient and hence is the same as in the neutral case. When the mutation rate is positive, we give a procedure for computing the probability that two individuals in a sample are identical by descent and the Laplace transform of the time to the most recent common ancestor of a sample of two individuals; we evaluate the first two terms of their respective power series in terms of the selection coefficient. The probability of identity by descent depends on both the selection coefficient and the mutation rate and is different from the analogous expression in the neutral case. The Laplace transform does not have a linear correction term in the selection coefficient. We also provide a recursion formula that can be used to approximate the probability of a given sample by simulating backwards along the sample paths of the ancestral selection graph, a technique developed by Griffiths and Tavaré (1994).  相似文献   

18.
Determining the most appropriate way to represent the relationships between bacterial isolates is complicated by the differing rates of recombination within species. In many cases, a bifurcating tree can be positively misleading. The recently described program eBURST can be used with multilocus data to define groups or clonal complexes of related isolates derived from a common ancestor, the patterns of descent linking them together, and the ancestral genotype. eBURST has recently been extensively updated to include additional tools for exploring the relationships between isolates. We discuss the advantages of this approach and describe its use to explore patterns of descent within clonal complexes identified using multilocus sequence typing.  相似文献   

19.
The hypothesis that all life on earth traces back to a single common ancestor is a fundamental postulate in modern evolutionary theory. Yet, despite its widespread acceptance in biology, there has been comparatively little attention to formally testing this "hypothesis of common ancestry". We review and critically examine some arguments that have been proposed in support of this hypothesis. We then describe some theoretical results that suggest the hypothesis may be intrinsically difficult to test. We conclude by suggesting an approach to the problem based on the Aikaike information criterion.  相似文献   

20.
Evolution of sensory structures in basal metazoa   总被引:3,自引:0,他引:3  
Cnidaria have traditionally been viewed as the most basal animalswith complex, organ-like multicellular structures dedicatedto sensory perception. However, sponges also have a surprisingrange of the genes required for sensory and neural functionsin Bilateria. Here, we: (1) discuss "sense organ" regulatorygenes, including; sine oculis, Brain 3, and eyes absent, thatare expressed in cnidarian sense organs; (2) assess the sensoryfeatures of the planula, polyp, and medusa life-history stagesof Cnidaria; and (3) discuss physiological and molecular datathat suggest sensory and "neural" processes in sponges. We thendevelop arguments explaining the shared aspects of developmentalregulation across sense organs and between sense organs andother structures. We focus on explanations involving divergentevolution from a common ancestral condition. In Bilateria, distinctsense-organ types share components of developmental-gene regulation.These regulators are also present in basal metazoans, suggestingevolution of multiple bilaterian organs from fewer antecedentsensory structures in a metazoan ancestor. More broadly, wehypothesize that developmental genetic similarities betweensense organs and appendages may reflect descent from closelyassociated structures, or a composite organ, in the common ancestorof Cnidaria and Bilateria, and we argue that such similaritiesbetween bilaterian sense organs and kidneys may derive froma multifunctional aggregations of choanocyte-like cells in ametazoan ancestor. We hope these speculative arguments presentedhere will stimulate further discussion of these and relatedquestions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号