首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Olfactory receptor cells of the spruce bark beetle,Ips typographus, and its predator, the clerid beetleThanasimus formicarius, were studied using electrophysiological techniques. Recordings were made of nerve impulses from single cells and of the summated receptor potential (electroantennogram).Information from bark beetle pheromones and host volatiles is detected by separate olfactory receptor cells inI. typographus. Those which detected bark beetle pheromones responded to only one key substance. Some receptor cells which responded to spruce bark volatiles were strongly activated by one of the synthetic host compounds tested. However, too few host compounds were tested to reach definite conclusions about the specialization of host odour cells. T. formicarius has evolved olfactory receptor cells for bark beetle pheromones. These have similar specificities (specialist types) to those of the bark beetles. Furthermore, the predator has olfactory receptor cells for many bark beetle pheromones. This indicates thatT. formicarius is able to detect and discriminate between many bark beetle species. No significant differences were found between prey and predator cells which responded to host volatiles.  相似文献   

2.
The influence of Tomicus piniperda (L.)(Col.:Scolytidae) attacks on Acanthocinus aedilis (L.)(Col.:Cerambycidae) (1) oviposition behavior, (2) breeding material preference and (3) reproductive success was investigated in caged pine bolts with and without egg galleries of T. piniperda. In addition, A. aedilis oviposition behavior was studied in the field. In the presence of T. piniperda attacks most A. aedilis eggs were laid through the entrance holes of the bark beetle egg galleries. In the absence of bark beetle attacks most A. aedilis eggs were laid at places where the outer bark had been damaged and the phloem was exposed. In cages, A. aedilis preferred to oviposit in bolts with bark beetle attacks. Thus, A. aedilis oviposited in all 17 of bark beetle attacked bolts but in only four of nine bolts without T. piniperda attacks. Neither the number of A. aedilis offspring nor the body size of emerging adults differed significantly between bolts attacked by bark beetles and unattacked bolts. Nor was there any significant relationship between the density of bark beetle egg galleries and the production of A. aedilis offspring.  相似文献   

3.
4.
Abstract:  Semiochemical interactions between the spruce bark beetle Ips typographus , its predators Medetera setiventris , Thanasimus formicarius and Thanasimus femoralis , and the host Norway spruce, Picea abies , were studied in the field. The chemicals S - cis -verbenol, 2-methyl-3-buten-2-ol, ipsdienol, (+)- α -pinene, (−)- α -pinene, (±)- α -pinene, limonene, camphor and their naturally occuring mixtures were used as trap baits in a multiple-choice design that allowed for comparison of their attractivity for the focal species. Medetera was attracted to both the prey aggregation pheromone and its multifunctional component, ipsdienol. On the contrary, both Thanasimus species responded predominantly to ipsdienol and less to the prey aggregation pheromone. In the case of I. typographus , the attractivity of aggregation pheromone seems to be increased by the addition of a mixture of monoterpenic tree volatiles, and by addition of ipsdienol. Bark beetles and predators showed species-specific responses to volatile mixtures representing different stages of tree decay and different stages of bark beetle colony establishment. These responses correlates with the optimal foraging habitat of each species. None of the predator species responded to 2-methyl-3-buten-2-ol, a substantial component of I. typographus pheromonal bouquet, thus it is hypothesized that only substances of monoterpenic origin attract predators.  相似文献   

5.
外来入侵林业害虫强大小蠹的侵袭以及相关信息化学物质   总被引:9,自引:0,他引:9  
强大小蠹是入侵我国并造成很大危害的鞘翅目棘胫小蠹科大小蠹属树皮低干森林害虫。它能侵害多种针叶树和松树 ,能被寄主挥发物和其它小蠹虫的外激素所引诱。该文综述了强大小蠹的侵袭习性以及寄主挥发物、其它小蠹虫的外激素对强大小蠹的引诱和驱避作用。  相似文献   

6.
The aim of this study was to investigate the host selection capacity of the pine shoot beetle, Tomicus piniperda, in the shoot-feeding phase and analyze the chiral and non-chiral host volatiles by means of GC-MS and 2D-GC in five Pinus species originating from France (Pinus sylvestris, P. halepensis, P. nigra laricio, P. pinaster maritima, P. pinaster mesogeensis). Dominating monoterpenes were (-)-alpha-pinene, (+)-alpha-pinene, (-)-beta-pinene and (+)-3-carene. The amounts of the enantiomers varied considerably within and among the species. In a principal component analysis-plot, based on the absolute amounts of 18 monoterpene hydrocarbons, separation of the pine species into two groups was obtained. P. halepensis and P. sylvestris were grouped according to the amount of (+)-alpha-pinene and (+)-3-carene, while P. nigra laricio, P. pinaster maritima and P. pinaster mesogeensis were grouped according to (-)-alpha-pinene and (-)-beta-pinene. P. nigra laricio was the species most attacked and P, halepensis the one least attacked by T. piniperda.  相似文献   

7.
  1. Thousand Cankers Disease (TCD) of walnut trees is caused by the pathogenic fungus Geosmithia morbida vectored by the walnut twig beetle (WTB) Pityophthorus juglandis. Monitoring efforts for WTB rely on pheromone-baited traps, but lures are likely effective at attracting beetles only over short distances. Fungal-derived kairomones may increase the efficacy of current lures, while additional volatiles may repel beetles from valuable trees.
  2. The objective of this study was to determine the extent to which fungal, host and non-host volatiles modify the attraction of WTB to pheromone-baited traps. A trapping study that combined fungal, host-associated and non-host compounds with WTB-pheromone lures was conducted over three years in black walnut plantations experiencing a TCD outbreak in Walla Walla, WA.
  3. Traps baited with pheromone and G. morbida volatiles (i.e., isoamyl and isobutyl alcohol) consistently attracted more WTB, while other fungal volatiles inconsistently increased attraction compared to those baited with pheromone lure alone. This is the first field study that demonstrates fungal volatiles can increase the attraction of a bark beetle to its pheromone in a hardwood system.
  4. One fungal (benzyl alcohol) and two additional volatiles (limonene, piperitone) repelled WTB from pheromone-baited traps. Although limonene is known to repel WTB, this is the first demonstration that benzyl alcohol and piperitone repel a bark beetle.
  5. Fungal volatiles may increase the efficacy of monitoring efforts and may play an important role in management tactics for WTB, especially in detecting the introduction and establishment of nascent populations and protecting trees from colonizing beetles.
  相似文献   

8.
Abstract.  1. There has been a long-standing pre-occupation with how phytophagous insects use olfactory cues to discriminate hosts from non-hosts. Foragers, however, should use whatever cues are accurate and easily assessed, including visual cues.
2. It was hypothesised that three bark beetles, the mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, the Douglas-fir beetle (DFB), D. pseudotsugae Hopkins, and the western balsam bark beetle (WBBB), Dryocoetes confusus Swaine, integrate visual and olfactory information to avoid non-host angiosperms (e.g. paper birch, trembling aspen), that differ in visual and semiochemical profile from their respective host conifers (lodgepole pine, Douglas-fir, interior fir), and tested this hypothesis in a series of field trapping experiments.
3. All three species avoided attractant-baited, white (non-host simulating) multiple-funnel traps, and preferred attractant-baited black (host-simulating) traps. In experiments combining white, non-host traps with non-host angiosperm volatiles, bark beetles were repelled by these stimuli in an additive or redundant manner, confirming that these species could integrate visual and olfactory information to avoid non-host angiosperms while flying.
4. When antiaggregation pheromones were released from white traps, the DFB and MPB were repelled in an additive-redundant manner, suggesting that beetles can integrate diverse and potentially anomalous stimuli.
5. The MPB demonstrated the most consistent visual preferences, suggesting that it may be more of a 'visual specialist' than the DFB or WBBB, for which visual responses may be more contingent on olfactory inputs.  相似文献   

9.
Secondary attraction to aggregation pheromones plays a central role in the host colonization behavior of the European spruce bark beetle Ips typographus. However, it is largely unknown how the beetles pioneering an attack locate suitable host trees, and eventually accept or reject them. To find possible biomarkers for host choice by I. typographus, we analyzed the chemistry of 58 Norway spruce (Picea abies) trees that were subsequently either (1) successfully attacked and killed, (2) unsuccessfully attacked, or (3) left unattacked. The trees were sampled before the main beetle flight in a natural Norway spruce-dominated forest. No pheromones were used to attract beetles to the experimental trees. To test the trees' defense potential, each tree was treated in a local area with the defense hormone methyl jasmonate (MeJ), and treated and untreated bark were analyzed for 66 different compounds, including terpenes, phenolics and alkaloids. The chemistry of MeJ-treated bark correlated strongly with the success of I. typographus attack, revealing major chemical differences between killed trees and unsuccessfully attacked trees. Surviving trees produced significantly higher amounts of most of the 39 analyzed mono-, sesqui-, and diterpenes and of 4 of 20 phenolics. Alkaloids showed no clear pattern. Differences in untreated bark were less pronounced, where only 1,8-cineole and (-)-limonene were significantly higher in unsuccessfully attacked trees. Our results show that the potential of individual P. abies trees for inducing defense compounds upon I. typographus attack may partly determine tree resistance to this bark beetle by inhibiting its mass attack.  相似文献   

10.
The pine shoot beetle, Tomicus piniperda (L.), is an exotic pest that has become established in North America. Discovered in Ohio in 1992, it has since been found in at least 13 states and parts of Canada. The beetle can cause significant growth loss in pines, and it represents a potential threat to trees in areas where it has not yet become established. To evaluate this threat to native pines, field and laboratory tests were conducted on several common and important southern and western species to determine whether they are acceptable hosts for T. piniperda. Comparisons with Pinus sylvestris L., Scots pine, a preferred natural host for the beetle, were made where possible. Measurements of beetle attack success on southern pine billets showed that Pinus taeda L., Pinus echinata Miller, Pinus elliottii var. elliottii Engelmann, Pinus palustris Miller, and Pinus virginiana Miller (loblolly, shortleaf, slash, longleaf, and Virginia pine, respectively) and two western pines, Pinus ponderosa Lawson and Pinus contorta Douglas (ponderosa and lodgepole pine, respectively), were acceptable for breeding material, but brood production was highly variable. Among the southern pines, P. taeda and P. echinata were susceptible to shoot feeding by T. piniperda, whereas P. elliottii was highly resistant and P. palustris seemed to be virtually immune. Shoot feeding tests on the western pines were conducted only in the laboratory, but there was moderate-to-good survival of adults feeding on both species. It seems that if T. piniperda is introduced into the south and west it will likely establish and may cause some damage to native pines. P. taeda may be affected more than other southern pines because it is the most abundant species, it is readily attacked for brood production, which can result in moderately large broods, and the beetle survives well during maturation feeding on P. taeda shoots.  相似文献   

11.
Abstract:  The pine sawyer Monochamus galloprovincialis is the European vector of the recently introduced pine wood nematode. This nematode is the causal organism of pine wilt disease, a serious tree killer in East Asia. Efficacious baits and traps to monitor and control this beetle are now required. The effect of bark beetle ( Ips spp.) pheromone components, released individually (ipsenol) or in blends (ipsenol, ipsdienol, cis -verbenol and methyl-butenol), together with host volatiles (turpentine or α -pinene and ethanol) on M. galloprovincialis trap catches has been studied in Spain. A kairomonal response by male and female of M. galloprovincialis to Ips semiochemicals was found. Beetles were more attracted to host blends supplemented with bark beetle pheromones than to host volatiles alone. Ipsenol alone was attractive to pine sawyers, and was synergistic with α -pinene and ethanol. The full blend of the four Ips semiochemicals and the host compounds was highly attractive. Multiple-funnel traps were as effective as black cross-vane traps in capturing this insect when the escape of trapped beetles was prevented. Trapping of non-target bark beetle predators was also evaluated. The trogossitid Temnochila coerulea and clerid Thanasimus formicarius were kairomonally attracted to and killed in traps baited with bark beetle pheromones. These results suggest that effective monitoring of M. galloprovincialis would be possible by baiting any of these traps with host volatiles and Ips semiochemicals, but reduction of the lure components and trap modification to minimize impact on predators should be considered.  相似文献   

12.
The induced defence reaction of Scots pine Pinus sylvestris to stem attacks by the common pine shoot beetle, Tomicus piniperda (Col, Scolytidae), was studied by inducing natural attacks on young Scots pine trees of different vigour Pruned trees were more heavily attacked by T piniperda than unpruned ones Vigorous trees successfully contained the attacking beetles within resinous lesions, whereas less vigorous trees failed to defend themselves The content of resin acids increased dramatically in the lesions on all trees, and the resin acid composition differed somewhat between some treatments Starch accumulation in the inner bark of the main stem was lower in pruned trees than in unpruned ones, and starch reserves were depleted in the most heavily attacked trees All but one of the unpruned trees survived the attack, whereas most of the severely pruned ones died following attack by beetles at densities exceeding c 300 egg galleries m−2  相似文献   

13.
Host selection by herbivorous insects is primarily thought to depend on attraction to olfactory cues emitted from the host species. However, the discrimination of these hosts from non-host species may also arise from the adaptive detection and avoidance of non-host cues, including visual characteristics. Many generalist, conifer-colonising beetles, for example, use characteristic volatiles to identify and discriminate against non-host angiosperm trees such as aspens and birches while flying. These trees also differ in bark reflectance characteristics, which could also mediate host/non-host discrimination by interacting with semiochemicals. We tested this hypothesis by evaluating the responses of eight species of polyphagous woodboring beetles to traps which simulated the visual appearance of coniferous hosts (black) and angiosperm non-hosts (white), and which were baited with host or non-host volatiles. As predicted, three species of large woodboring beetle and a woodboring wasp all avoided white, non-host-simulating traps that were baited with attractive kairomones, and preferred black, host-simulating traps. Conversely, three ambrosia beetle species demonstrated weaker visual preferences, possibly because they preferentially colonise fallen hosts that would transmit less accurate visual information. However, the ambrosia beetle Trypodendron lineatum did show a greater preference for host-coloured traps when these released host-associated kairomones in addition to their pheromone, and also avoided white non-host traps, but only when these released non-host volatiles. To our knowledge, this is the first evidence that multiple non-host cues could synergistically mediate the adaptive discrimination of hosts and non-hosts. Our results suggest that successful host location by generalists arises from the complex integration of cues in multiple sensory modes, and that foraging herbivores evaluate both hosts and non-hosts during their search.  相似文献   

14.
1. A spatio‐temporal study of host selection and local spread of a solitary bark beetle attacking live spruce Dendroctonus micans (Kugelann) was carried out using a combination of standard statistical methods, geostatistical analyses, and modelling. The study was based on data from three plots (150–300 trees, 0.3–1 ha) from 1978 to 1993. All trees were mapped and successful and abortive bark‐beetle attacks on each tree were counted annually. Because the attacked trees usually survived, temporal attack patterns as well as spatial patterns could be analysed. 2. The distribution of successful insect attacks on the trees was slightly aggregative, indicating some degree of choice rather than totally random establishment. 3. The level of yearly individual attacks per tree was very stable, suggesting that D. micans usually leave the host in which they develop. 4. The attacked trees were distributed randomly in the plots; at the study's spatial scale, the insects dispersed freely throughout the plot (no spatial dependence). 5. On the other hand, time dependence was strong; some trees were attacked repeatedly while others were left untouched. 6. Among a choice of scenarios (random attack, fixed variability in individual host susceptibility, induced host susceptibility following random attack), the best fit was obtained with the model involving induced individual host susceptibility. This type of relation to the host tree contrasts strongly with patterns generally described in host–plant relationships (including gregarious, tree‐killing bark beetles), where local herbivore damage results in induced resistance. 7. These results suggest that the first attacks in a new stand are made at random, that all or most of the beetles emerging from a tree disperse and resample the stand, and that they settle preferentially on trees that were colonised successfully by previous generations.  相似文献   

15.
Abstract 1 Synthetic blends of bole and foliage volatiles of four sympatric species of conifers were released from pheromone‐baited multiple‐funnel traps to determine if three species of tree‐killing bark beetles (Coleoptera: Scolytidae): (i) exhibited primary attraction to volatiles of their hosts and (ii) discriminated among volatiles of four sympatric species of host and nonhost conifers. 2 Bole and foliage volatiles from Douglas‐fir, Pseudotsuga menziesii (Mirb.) Franco, increased the attraction of coastal and interior Douglas‐fir beetles, Dendroctonus pseudotsugae Hopkins, to pheromone‐baited traps. Primary attraction to bole volatiles was observed in interior D. pseudotsugae. Beetles were significantly less attracted to the pheromone bait when it was combined with volatiles of lodgepole pine, Pinus contorta var. latifolia Engelm. or interior fir, Abies lasiocarpa × bifolia. 3 The monoterpene myrcene synergized attraction of mountain pine beetles, Dendroctonus ponderosae Hopkins, to their aggregation pheromones, but there was no evidence of primary attraction to host volatiles or discrimination among volatiles from the four conifers. 4 There was significant primary attraction of the spruce beetle, Dendroctonus rufipennis Kirby, to bole and foliage volatiles of interior spruce, Picea engelmannii × glauca, but beetles did not discriminate among volatiles of four sympatric conifers when they were combined with pheromone baits. 5 Our results indicate that host volatiles act as kairomones to aid pioneer Douglas‐fir beetles and spruce beetles in host location by primary attraction, and that their role as synergists to aggregation pheromones is significant. For the mountain pine beetle, we conclude that random landing and close range acceptance or rejection of potential hosts would occur in the absence of aggregation pheromones emanating from a tree under attack.  相似文献   

16.
Lymantria monacha (L.) (Lepidoptera: Lymantriidae), the nun moth, is a Eurasian pest of conifers that has potential for accidental introduction into North America. To project the potential host range of this insect if introduced into North America, survival and development of L. monacha on 26 North American and eight introduced Eurasian tree species were examined. Seven conifer species (Abies concolor, Picea abies, P. glauca, P. pungens, Pinus sylvestris with male cones, P. menziesii variety glance, and Tsuga canadensis) and six broadleaf species (Betula populifolia, Malus x domestica, Prunus serotiaa, Quercus lobata, Q. rubra, and Q. velutina) were suitable for L. monacha survival and development. Eleven of the host species tested were rated as intermediate in suitability, four conifer species (Larix occidentalis, P. nigra, P. ponderosa, P. strobus, and Pseudotsuga menziesii variety menziesii) and six broadleaf species (Carpinus caroliniana, Carya ovata, Fagus grandifolia, Populus grandidentata, Q. alba, and Tilia cordata) and the remaining 10 species tested were rated as poor (Acer rubrum, A. platanoidies, A. saccharum, F. americana, Juniperus virginiana, Larix kaempferi, Liriodendron tulipfera, Morus alba, P. taeda, and P. deltoides). The phenological state of the trees had a major impact on establishment, survival, and development of L. monacha on many of the tree species tested. Several of the deciduous tree species that are suitable for L. monacha also are suitable for L. dispar (L.) and L. mathura Moore. Establishment of L. monacha in North America would be catastrophic because of the large number of economically important tree species on which it can survive and develop, and the ability of mated females to fly and colonize new areas.  相似文献   

17.
Predation and bark beetle dynamics   总被引:4,自引:0,他引:4  
John D. Reeve 《Oecologia》1997,112(1):48-54
Bark beetle populations may undergo dramatic fluctuations and are often important pests in coniferous forests. Their dynamics are thought to be primarily driven by factors affecting the resistance of the host tree to attack, i.e., bottom-up forces, while natural enemies are usually assigned a minor role in these systems. I present behavioral experiments that suggest that the clerid beetle Thanasimus dubius may be an important source of mortality for the bark beetle Dendroctonus frontalis during attack of the host tree, and determine the nature of the functional response of T. dubius under conditions close to natural. I also examine the numerical response of T. dubius to large-scale fluctuations in D. frontalis density, and the relationship between bark beetle population trends and predator density, and find that beetle populations tend to decline when predator densities are high. Combined with the effects of clerid larvae on bark beetle broods, these results suggest that top-down forces generated by natural enemies could also be an important component of bark beetle dynamics. The implications of these results for bark beetle dynamics are discussed in relation to the prolonged life-cycle of clerid beetles. Received: 23 January 1997 / Accepted: 5 April 1997  相似文献   

18.
Abstract. Insects apparently responding to the visual stimulus offered by a tree or other object may also be responding to the variety of physical effects caused by the obstruction, including turbulence, a reduction in wind velocity and eddies. The relative importance of prey odour associated with the bark beetle Dendroctonus micans (Kugelann) (Scolytidae), prey-host-tree odour, silhouette, and physical barrier to the wind, in the orientation and landing behaviour of a predatory beetle, Rhizophagus grandis Gyllenhall (Rhizophagidae), were investigated. R. grandis responded very positively to the frass of its prey when presented on a 'tree' but not to the same quantity of frass presented alone. Frass on black plastic uPVC pipes was significantly more attractive than frass on real host tree logs, suggesting that host-tree volatiles do not enhance the attractiveness of prey frass.
The beetles responded to 'transparent' Mylar three-dimensional cylinders in the same way as they did to the black plastic pipes. Beetles were also tested with frass and two-dimensional stimuli offering a visual stimulus or physical barrier alone or in combination. Frass with a two-dimensional visual stimulus was no better than frass alone: few insects landed. Significantly more insects were attracted to the same two-dimensional visual stimulus with a hidden upwind barrier producing turbulence, but a similar number were attracted to the frass in front of a hidden barrier alone. As many plants are similar in size to the logs used in these experiments, comparable effects might influence the behaviour of other phytophagous insects, their predators and parasitoids.  相似文献   

19.
We treated Norway spruce (Picea abies) stems with methyl jasmonate (MeJA) to determine possible quantitative and qualitative effects of induced tree defenses on pheromone emission by the spruce bark beetle Ips typographus. We measured the amounts of 2-methyl-3-buten-2-ol and (S)-cis-verbenol, the two main components of the beetle's aggregation pheromone, released from beetle entrance holes, along with phloem terpene content and beetle performance in MeJA-treated and untreated Norway spruce logs. As expected, phloem terpene levels were higher and beetle tunnel length was shorter (an indication of poor performance) in MeJA-treated logs relative to untreated logs. Parallel to the higher phloem terpene content and poorer beetle performance, beetles in MeJA-treated logs released significantly less 2-methyl-3-buten-2-ol and (S)-cis-verbenol, and the ratio between the two pheromone components was significantly altered. These results suggest that host resistance elicited by MeJA application reduces pheromone emission by I. typographus and alters the critical ratio between the two main pheromone components needed to elicit aggregation. The results also provide a mechanistic explanation for the reduced performance and attractivity observed in earlier studies when bark beetles colonize trees with elicited host defenses, and extend our understanding of the ecological functions of conifer resistance against bark beetles.  相似文献   

20.
Abstract 1 When searching for suitable hosts in flight, especially in mixed forests, conifer‐inhabiting bark beetles will encounter not only suitable host trees and their odours, but also unsuitable hosts and nonhost trees. Rejection of these trees could be based on an imbalance of certain host characteristics and/or a negative response to some nonhost stimuli, such as nonhost volatiles (NHV). 2 Recent electrophysiological and behavioural studies clearly indicate that conifer‐inhabiting bark beetles are not only able to recognize, but also to avoid, nonhost habitats or trees by olfactory means. Green leaf volatiles (GLV), especially C6‐alcohols, from the leaves (and partly from bark) of nonhost angiosperm trees, may represent nonhost odour signals at the habitat level. Specific bark volatiles such as trans‐conophthorin, C8‐alcohols, and some aromatic compounds, may indicate nonhosts at the tree species level. Flying bark beetles are also capable of determining whether a possible host is unsuitable by reacting to signals from conspecifics or sympatric heterospecifics that indicate old or colonized host tree individuals. 3 Combined NHV signals in blends showed both redundancy and synergism in their inhibitory effects. The coexistence of redundancy and synergism in negative NHV signals may indicate different functional levels (nonhost habitats, species, and unsuitable hosts) in the host selection process. Combinations of NHV and verbenone significantly reduced the number of mass attacked host trees or logs on several economically important species (e.g. Dendroctonus ponderosae, Ips typographus, and I. sexdentatus). 4 We suggest a semiochemical‐diversity hypothesis, based on the inhibition by NHV of bark beetle host‐location, which might partly explain the lower outbreak rates of forest insects in mixed forests. This ‘semiochemical‐diversity hypothesis’ would provide new support to the general ‘stability‐diversity hypothesis’. 5 Natural selection appears to have caused conifer‐inhabiting bark beetles to evolve several olfactory mechanisms for finding their hosts and avoiding unsuitable hosts and nonhost species. NHV and unsuitable host signals have potential for use in protecting trees from attack. The use of these signals may be facilitated by the fact that their combination has an active inhibition radius of several metres in trap test, and by the observation of area effects for several trees near inhibitor soruces in tree protection experiments. Furthermore, incorporation of negative signals (such as NHV and verbenone) and pheromone‐based mass‐trapping in a ‘push–pull’ fashion may significantly increase the options for control against outbreaks of conifer‐inhabiting bark beetles, especially in high risk areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号