首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major cause of morbidity and mortality in patients with cystic fibrosis, an autosomal recessive disorder, is chronic microbial colonisation of the major airways that leads to exacerbation of pulmonary infection. Several different microbes colonise cystic fibrosis lungs, and Pseudomonas aeruginosa is one of the most threatening, since the establishment of mucoid (alginate producing) strains is ultimately associated with the patient's death. Very recently a new bacterium, named Inquilinus limosus, was repeatedly found infecting the respiratory tract of cystic fibrosis patients. Its multi-resistance characteristic to antibiotics might result in the spreading of I. limosus infection among the cystic fibrosis community, as recently happened with strains of the Burkholderia cepacia complex. Since exopolysaccharides are recognised as important virulence factors in lung infections, the primary structure of the polysaccharide produced by I. limosus strain LMG 20952(T) was investigated as the first step in understanding its role in pathogenesis. The structure was determined by means of methylation analysis, acid degradations, mass spectrometry and NMR spectroscopy. The results showed that the bacterium produced a mixture constituted of the following polymers: [3)-[4,6-O-(1-carboxyethylidene)]-beta-D-Glcp(1-->]n; [2)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Manp(1-->]n. Both polymers were completely substituted with pyruvyl ketal groups, a novel structural characteristic not previously found in bacterial polysaccharides. The absolute configuration of all pyruvyl groups was S. Inspection of possible local conformations assumed by the two polysaccharide chains showed features, which might provide interesting clues for understanding structure-function relationships.  相似文献   

2.
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different EPS, the majority of Bcc bacteria produce only one type of polysaccharide, which is called cepacian. The polymer has a unique heptasaccharidic repeating unit, containing three side chains, and up to three O-acetyl substituents.. We here report for the first time the isolation and characterisation of a lyase active towards cepacian produced by a Bacillus sp., which was isolated in our laboratory. The enzyme molecular mass, evaluated by size-exclusion chromatography, is 32,700+/-1500Da. The enzyme catalyses a beta-elimination reaction of the disaccharide side chain beta-d-Galp-(1-->2)-alpha-d-Rhap-(1--> from the C-4 of the glucuronic acid residue present in the polymer backbone. Although active on both native and de-acetylated cepacian, the enzyme showed higher activity on the latter polymer.  相似文献   

3.
The production of exopolysaccharides (EPSs) by a mucoid clinical isolate of Burkholderia cepacia involved in infections in cystic fibrosis patients, was studied. Depending on the growth conditions, this strain was able to produce two different EPS, namely PS-I and PS-II, either alone or together. PS-I is composed of equimolar amounts of glucose and galactose with pyruvate as substituent, and was produced on all media tested. PS-II is constituted of rhamnose, mannose, galactose, glucose and glucuronic acid in the ratio 1:1:3:1:1, with acetate as substituent, and was produced on either complex or minimal media with high-salt concentrations (0.3 or 0.5 M NaCl). Although this behavior is strain-specific, and not cepacia-specific, the stimulation of production of PS-II in conditions that mimic those encountered by B. cepacia in the respiratory track of cystic fibrosis patients, suggests a putative role of this EPS in a pathologic context.  相似文献   

4.
The O-chain polysaccharide of the lipopolysaccharide from the endophytic bacterium Burkholderia cepacia strain was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be the following: -->2)-beta-D-Ribf-(1-->6)-alpha-D-Glcp-(1-->.  相似文献   

5.
The Burkholderia cepacia Complex assembles at least eighteen closely related species that are ubiquitous in nature. Some isolates show beneficial potential for biocontrol, bioremediation and plant growth promotion. On the contrary, other strains are pathogens for plants and immunocompromised individuals, like cystic fibrosis patients. In these subjects, they can cause respiratory tract infections sometimes characterised by fatal outcome. Most of the Burkholderia cepacia Complex species are mucoid when grown on a mannitol rich medium and they also form biofilms, two related characteristics, since polysaccharides are important component of biofilm matrices. Moreover, polysaccharides contribute to bacterial survival in a hostile environment by inhibiting both neutrophils chemotaxis and antimicrobial peptides activity, and by scavenging reactive oxygen species. The ability of these microorganisms to produce exopolysaccharides with different structures is testified by numerous articles in the literature. However, little is known about the type of polysaccharides produced in biofilms and their relationship with those obtained in non-biofilm conditions. The aim of this study was to define the type of exopolysaccharides produced by nine species of the Burkholderia cepacia Complex. Two isolates were then selected to compare the polysaccharides produced on agar plates with those formed in biofilms developed on cellulose membranes. The investigation was conducted using NMR spectroscopy, high performance size exclusion chromatography, and gas chromatography coupled to mass spectrometry. The results showed that the Complex is capable of producing a variety of exopolysaccharides, most often in mixture, and that the most common exopolysaccharide is always cepacian. In addition, two novel polysaccharide structures were determined: one composed of mannose and rhamnose and another containing galactose and glucuronic acid. Comparison of exopolysaccharides obtained from cultures on agar plates with those extracted from biofilms on cellulose membranes showed important differences, thus suggesting that extrapolating data from non-biofilm conditions might not always be applicable.  相似文献   

6.
A novel halophilic isolate from soil samples taken from Çamalt? Saltern area in Turkey, Halomonas sp. AAD6 (JCM 15723) strain, was found to produce high levels of exopolysaccharides (EPS), in the presence of sucrose in defined media, by flasks and bioreactor condition yielded 1.073 g L?1 and 1.844 g L?1, respectively. Sugar analysis, methylation studies and NMR analysis of EPS indicated the repeating unit of this polysaccharide was composed of β-(2,6)-d-fructofuranosyl residues. Hence with this work, Halomonas sp. has been described as a levan producer microorganism for the first time. Biocompatibility studies showed this EPS did not affect cellular viability and proliferation of osteoblasts and murine macrophages. The protective effect of the polymer against the toxic activity of avarol implied its additional use as an anti-cytotoxic agent. Halomonas sp. AAD6 could represent an alternative cheap source of levan polymer when grown on defined media hypothesizing its larger employment in industrial application being non pathogenic microorganism.  相似文献   

7.
The interaction of bacterial exopolysaccharides, produced by opportunistic lung pathogens, with antimicrobial peptides of the innate primate immune system was investigated. The exopolysaccharides were produced by Pseudomonas aeruginosa , Inquilinus limosus and clinical isolates of the Burkholderia cepacia complex, bacteria that are all involved in lung infections of cystic fibrosis patients. The effects of the biological activities of three orthologous cathelicidins from Homo sapiens sapiens , Pongo pygmaeus (orangutan) and Presbitys obscurus (dusky leaf monkey) were examined. Inhibition of the antimicrobial activity of peptides was assessed using minimum inhibitory concentration assays on a reference Escherichia coli strain in the presence and absence of exopolysaccharides, whereas complex formation between peptides and exopolysaccharides was investigated by means of circular dichroism, fluorescence spectroscopy and atomic force microscopy. Biological assays revealed that the higher the negative charge of exopolysaccharides the stronger was their inhibiting effect. Spectroscopic studies indicated the formation of molecular complexes of varying stability between peptides and exopolysaccharides, explaining the inhibition. Atomic force microscopy provided a direct visualization of the molecular complexes. A model is proposed where peptides with an α-helical conformation interact with exopolysaccharides through electrostatic and other non-covalent interactions.  相似文献   

8.
Smooth-type lipopolysaccharide (LPS) of Burkholderia pseudomallei has been reported to contain two kinds of O-antigenic polysaccharides, a 1,3-linked homopolymer of 6-deoxy-heptose and a polymer with a repeating unit of -->3)-glucose-(1-->3)-6-deoxy-talose-(1--> with O-acetyl or O-methyl modifications. A LPS preparation containing these two polysaccharides was separated by gel-permeation chromatography in this study. Chemical analysis of the separated fractions revealed the 6-deoxy-heptan [corrected] to be a polysaccharide without a lipid portion and the polymer of glucose and 6-deoxy-talose to be an O-antigenic polysaccharide of the LPS. This result was further supported by the assay of these polysaccharide molecules for macrophage activation activity. The 6-deoxy-heptan [corrected] showed no macrophage activation, indicating that this polysaccharide was not the LPS, but one of the capsular polysaccharides of B. pseudomallei.  相似文献   

9.
The interaction of two cathelicidin antimicrobial peptides, LL-37 and SMAP-29, with three bacterial polysaccharides, respectively, produced by Pseudomonas aeruginosa, Burkholderia cepacia and Klebsiella pneumoniae, was investigated to identify possible mechanisms adopted by lung pathogens to escape the action of innate immunity effectors. In vitro assays indicated that the antibacterial activity of both peptides was inhibited to a variable extent by the three polysaccharides. Circular dichroism experiments showed that these induced an alpha-helical conformation in the two peptides, with the polysaccharides from K. pneumoniae and B. cepacia showing, respectively, the highest and the lowest effect. Fluorescence measurements also indicated the presence of peptide-polysaccharide interactions. A model is proposed in which the binding of peptides to the polysaccharide molecules induces, at low polysaccharide to peptide ratios, a higher order of aggregation, due to peptide-peptide interactions. Overall, these results suggest that binding of the peptides by the polysaccharides produced by lung pathogens can contribute to the impairment of peptide-based innate defenses of airway surface.  相似文献   

10.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

11.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides, which are assumed to play an important role in the hydrocarbon tolerance of this bacterium. The strain produced two acidic extracellular polysaccharides, FR1 and FR2, and the latter showed emulsifying activity toward clove oil, whereas the former did not. FR2 was composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1, and contained 2.9% (w/w) stearic acid and 4.3% (w/w) palmitic acid attached via ester bonds. Therefore, we designated FR2 as a PR4 fatty acid-containing extracellular polysaccharide or FACEPS. The chemical structure of the PR4 FACEPS polysaccharide chain was determined by 1D (1)H and (13)C NMR spectroscopies as well as by 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The sugar chain of PR4 FACEPS was shown to consist of tetrasaccharide repeating units having the following structure: [structure: see text].  相似文献   

12.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

13.
Some strains of the Burkholderia cepacia complex, including the ET12 lineage, have been implicated in epidemic spread amongst cystic fibrosis (CF) patients. Suppression-subtractive hybridisation was used to identify genomic regions within strain J2315 (ET12 lineage; genomovar IIIA) that were absent from a non-transmissible genomovar IIIB strain. Sequence data from 15 subtracted clones were used to interrogate the genome sequence of strain J2315 and identify genomic regions incorporating the subtracted sequences. Many of the genomic regions displayed abnormally low GC content and similarity to sequences implicated in gene transfer. The distribution of three subtracted regions amongst members of the B. cepacia complex varied. A large cluster of genes with strong sequence similarity to capsular production genes from Burkholderia mallei and other bacterial pathogens was identified. This genomic island was detected in some but not all representatives of genomovar IIIA, two out of four genomovar I strains, and one of two strains of Burkholderia multivorans, but was not detected in Burkholderia stabilis, Burkholderia vietnamiensis, genomovar VI or Burkholderia. ambifaria. The polysaccharide production gene cluster of strain J2315 carries an IS 407-like sequence within the gene similar to B. mallei wcbO that is lacking in other ET12 isolates. Genes from this cluster are expressed during exponential growth in broth.  相似文献   

14.
Burkholderia cepacia was originally described as the causative agent of bacterial rot of onions, and it has now emerged as an important opportunistic pathogen causing severe chronic lung infections in patients having cystic fibrosis. Burkholderia cepacia is now classified into nine very closely related species (previously designated as genomovars), all of which have been isolated from both environmental and clinical sources and are collectively known as the B. cepacia complex. The alternative extracytoplasmic function sigma factor, sigmaE, has been determined in several bacterial species as making substantial contributions to bacterial survival under stress conditions. Here, we report the identification and characterization of the rpoE gene, encoding sigmaE, of B. cepacia. It is highly similar to sigmaE of other bacteria, including Escherichia coli and Pseudomonas aeruginosa. Studies using an rpoE knockout mutant of B. cepacia revealed that many stress adaptations, including osmotic, oxidative, desiccation, carbon, and nitrogen stress, were independent of sigmaE. Similarly, biofilm formation; production of exopolysaccharides, N-acyl homoserine lactones, and several exoenzymes; and onion pathogenicity were not affected by the absence of sigmaE. In contrast, sigmaE contributed to the adaptation to heat stress and phosphate starvation.  相似文献   

15.
Dextrans are the main exopolysaccharides produced by Leuconostoc species. Other dextran-producing lactic acid bacteria include Streptococci, Lactobacilli, and Weissella species. Commercial production and structural analysis has focused mainly on dextrans from Leuconostoc species, particularly on Leuconostoc mesenteroides strains. In this study, we used NMR spectroscopy techniques to analyze the structures of dextrans produced by Leuconostoc citreum E497 and Weissella confusa E392. The dextrans were compared to that of L. mesenteroides B512F produced under the same conditions. Generally, W. confusa E392 showed better growth and produced more EPS than did L. citreum E497 and L. mesenteroides B512F. Both L. citreum E497 and W. confusa E392 produced a class 1 dextran. Dextran from L. citreum E497 contained about 11% alpha-(1-->2) and about 3.5% alpha-(1-->3)-linked branches whereas dextran from W. confusa E392 was linear with only a few (2.7%) alpha-(1-->3)-linked branches. Dextran from W. confusa E392 was found to be more linear than that of L. mesenteroides B512F, which, according to the present study, contained about 4.1% alpha-(1-->3)-linked branches. Functionality, whether physiological or technological, depends on the structure of the polysaccharide. Dextran from L. citreum E497 may be useful as a source of prebiotic gluco-oligosaccharides with alpha-(1-->2)-linked branches, whereas W. confusa E392 could be a suitable alternative to widely used L. mesenteroides B512F in the production of linear dextran.  相似文献   

16.
The neutral exopolysaccharide produced by Lactobacillus delbrueckii ssp. bulgaricus LBB.B332 in skimmed milk was found to be composed of d-glucose, d-galactose, and l-rhamnose in a molar ratio of 1:2:2. Linkage analysis and 1D/2D NMR (1H and 13C) studies carried out on the native polysaccharide as well as on an oligosaccharide generated by a periodate oxidation protocol, showed the polysaccharide to consist of linear pentasaccharide repeating units with the following structure: -->3-alpha-D-Glcp-(1-->3)-alpha-D-Galp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->.  相似文献   

17.
Burkholderia is an important bacterial genus containing species of ecological, biotechnological, and pathogenic interest. With their taxonomy undergoing constant revision and the phenotypic similarity of several species, correct identification of Burkholderia is difficult. A genetic scheme based on the recA gene has greatly enhanced the identification of Burkholderia cepacia complex species. However, the PCR developed for the latter approach was limited by its specificity for the complex. By alignment of existing and novel Burkholderia recA sequences, we designed new PCR primers and evaluated their specificity by testing a representative panel of Burkholderia strains. PCR followed by restriction fragment length polymorphism analysis of an 869-bp portion of the Burkholderia recA gene was not sufficiently discriminatory. Nucleotide sequencing followed by phylogenetic analysis of this recA fragment differentiated both putative and known Burkholderia species and all members of the B. cepacia complex. In addition, it enabled the design of a Burkholderia genus-specific recA PCR that produced a 385-bp amplicon, the sequence of which was also able to discriminate all species examined. Phylogenetic analysis of 188 novel recA genes enabled clarification of the taxonomic position of several important Burkholderia strains and revealed the presence of four novel B. cepacia complex recA lineages. Although the recA phylogeny could not be used as a means to differentiate B. cepacia complex strains recovered from clinical infection versus the natural environment, it did facilitate the identification of clonal strain types of B. cepacia, B. stabilis, and B. ambifaria capable of residing in both niches.  相似文献   

18.
The extracellular fructosyltransferase (FTase) of a novel strain of Bacillus licheniformis capable of producing fructooligosaccharides (FOS) and a polysaccharide type levan was obtained and partially purified. The purification was achieved by ammonium sulfate precipitation, DEAE cellulose and gel filtration chromatographies. The enzyme was partially purified as determined by SDS-PAGE, and the specific activity reached was 67.5, representing a purification factor of 177 and yield of 40%. Levan was isolated from the cultures of B. licheniformis. The levan was composed mainly of fructose residues when analyzed by TLC after acid hydrolysis and NMR analysis. In a previous study, the levan produced exhibited a hypoglycemiant activity. The present paper deals with the study of the antitumor and anti-cytotoxic effect of levan produced by B. licheniformis strain. In the in vitro antitumor activity test of levan against some tumor cell lines, relatively the significantly high activity was observed against the HepG(2).  相似文献   

19.
The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media.  相似文献   

20.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号