共查询到20条相似文献,搜索用时 0 毫秒
1.
Manipulation and culture of early mouse embryos is a powerful yet largely under-utilized technology enhancing the value of this model system. Conversely, cell culture has been widely used in developmental biology studies. However, it is important to determine whether in vitro cultured cells truly represent in vivo cell types. Grafting cells into embryos, followed by an assessment of their contribution during development is a useful method to determine the potential of in vitro cultured cells. In this study, we describe a method for grafting cells into a defined site of early postimplantation mouse embryos, followed by ex vivo culture. We also introduce an optimized electroporation method that uses glass capillaries of known diameter, allowing precise localization and adjustment of the number of cells receiving exogenous DNA with both high transfection efficiency and low cell death. These techniques, which do not require any specialized equipment, render experimental manipulations of the gastrulation and early organogenesis-stage mouse embryo possible, allowing analysis of commitment in cultured cell subpopulations and the effect of genetic manipulations in situ on cell differentiation. 相似文献
2.
Benedetta Artegiani Christian Lange Federico Calegari 《Journal of visualized experiments : JoVE》2012,(68)
Somatic stem cells can divide to generate additional stem cells (expansion) or more differentiated cell types (differentiation), which is fundamental for tissue formation during embryonic development and tissue homeostasis during adulthood 1. Currently, great efforts are invested towards controlling the switch of somatic stem cells from expansion to differentiation because this is thought to be fundamental for developing novel strategies for regenerative medicine 1,2. However, a major challenge in the study and use of somatic stem cell is that their expansion has been proven very difficult to control.Here we describe a system that allows the control of neural stem/progenitor cell (altogether referred to as NSC) expansion in the mouse embryonic cortex or the adult hippocampus by manipulating the expression of the cdk4/cyclinD1 complex, a major regulator of the G1 phase of the cell cycle and somatic stem cell differentiation 3,4. Specifically, two different approaches are described by which the cdk4/cyclinD1 complex is overexpressed in NSC in vivo. By the first approach, overexpression of the cell cycle regulators is obtained by injecting plasmids encoding for cdk4/cyclinD1 in the lumen of the mouse telencephalon followed by in utero electroporation to deliver them to NSC of the lateral cortex, thus, triggering episomal expression of the transgenes 5-8. By the second approach, highly concentrated HIV-derived viruses are stereotaxically injected in the dentate gyrus of the adult mouse hippocampus, thus, triggering constitutive expression of the cell cycle regulators after integration of the viral construct in the genome of infected cells 9. Both approaches, whose basic principles were already described by other video protocols 10-14, were here optimized to i) reduce tissue damage, ii) target wide portions of very specific brain regions, iii) obtain high numbers of manipulated cells within each region, and iv) trigger high expression levels of the transgenes within each cell. Transient overexpression of the transgenes using the two approaches is obtained by different means i.e. by natural dilution of the electroporated plasmids due to cell division or tamoxifen administration in Cre-expressing NSC infected with viruses carrying cdk4/cyclinD1 flanked by loxP sites, respectively 9,15.These methods provide a very powerful platform to acutely and tissue-specifically manipulate the expression of any gene in the mouse brain. In particular, by manipulating the expression of the cdk4/cyclinD1 complex, our system allows the temporal control of NSC expansion and their switch to differentiation, thus, ultimately increasing the number of neurons generated in the mammalian brain. Our approach may be critically important for basic research and using somatic stem cells for therapy of the mammalian central nervous system while providing a better understanding of i) stem cell contribution to tissue formation during development, ii) tissue homeostasis during adulthood, iii) the role of adult neurogenesis in cognitive functions, and perhaps, iv) better using somatic stem cells in models of neurodegenerative diseases. 相似文献
3.
4.
5.
The formation and perfusion of developing renal blood vessels (apart from glomeruli) are greatly understudied. As vasculature develops via angiogenesis (which is the branching off of major vessels) and vasculogenesis (de novo vessel formation), perfusion mapping techniques such as resin casts, in vivo ultrasound imaging, and micro-dissection have been limited in demonstrating the intimate relationships between these two processes and developing renal structures within the embryo. Here, we describe the procedure of in utero intra-cardiac ultrasound-guided FITC-labeled tomato lectin microinjections on mouse embryos to gauge the ontogeny of renal perfusion. Tomato lectin (TL) was perfused throughout the embryo and kidneys harvested. Tissues were co-stained for various kidney structures including: nephron progenitors, nephron structures, ureteric epithelium, and vasculature. Starting at E13.5 large caliber vessels were perfused, however peripheral vessels remained unperfused. By E15.5 and E17.5, small peripheral vessels as well as glomeruli started to become perfused. This experimental technique is critical for studying the role of vasculature and blood flow during embryonic development. 相似文献
6.
In utero survival surgery in mice permits the molecular manipulation of gene expression during development. However, because the uterine wall is opaque during early embryogenesis, the ability to target specific parts of the embryo for microinjection is greatly limited. Fortunately, high-frequency ultrasound imaging permits the generation of images that can be used in real time to guide a microinjection needle into the embryonic region of interest. Here we describe the use of such imaging to guide the injection of retroviral vectors into the ventricular system of the mouse forebrain at embryonic day (E) 9.5. This method uses a laparotomy to permit access to the uterine horns, and a specially designed plate that permits host embryos to be bathed in saline while they are imaged and injected. Successful surgeries often result in most or all of the injected embryos surviving to any subsequent time point of interest (embryonically or postnatally). The principles described here can be used with slight modifications to perform injections into the amnionic fluid of E8.5 embryos (thereby permitting infection along the anterior posterior extent of the neural tube, which has not yet closed), or into the ventricular system of the brain at E10.5/11.5. Furthermore, at mid-neurogenic ages (~E13.5), ultrasound imaging can be used direct injection into specific brain regions for viral infection or cell transplantation. The use of ultrasound imaging to guide in utero injections in mice is a very powerful technique that permits the molecular and cellular manipulation of mouse embryos in ways that would otherwise be exceptionally difficult if not impossible. 相似文献
7.
8.
Most genes with regulatory functions in embryogenesis are expressed in highly specific patterns, suggesting that expression patterns can serve as criteria to define potential candidates fur developmentally relevant genes. To isolate such genes, we selected and partially sequenced 80 cDNA clones from a 10.5-day mouse embryo library. Forty-one clones that represented novel mouse genes were analyzed for expression in embryos of the same stage by whole-mount in situ hybridization. A high proportion (24%) of these genes, including a homologue of the Drosophila Delta gene, were expressed in specific spatially restricted patterns, suggesting that selection based on expression patterns is a useful strategy to isolate novel genes that may play pivotal roles in mammalian development. 相似文献
9.
探讨体外共培养环境中小鼠胚胎对人卵巢癌细胞HO8910PM的影响.通过小鼠胚胎与肿瘤细胞体外共培养模型观察小鼠胚胎对肿瘤细胞的形态及生长行为的影响,Annexin V-EGFP/PI原位检测与小鼠胚胎共培养后肿瘤细胞的凋亡情况,MTT粘附实验、transwell迁移及侵袭实验研究与小鼠胚胎共培养后的人卵巢癌细胞的粘附性、迁移性及侵袭性的变化.共培养时小鼠胚胎能够侵入人卵巢癌细胞并推开肿瘤细胞形成自己的生长空间,激光共聚焦显微镜下见胚胎周围的肿瘤细胞凋亡增加,与对照组比较共培养后的HO8910PM肿瘤细胞的粘附性、迁移性及侵袭性均显著降低(P0.05、P0.01).结果表明体外共培养体系中小鼠胚胎能够侵袭肿瘤细胞,促进人卵巢癌细胞的凋亡,并使其粘附性、迁移及侵袭相关恶性行为降低. 相似文献
10.
The haematopoietic development of embryonic stem (ES) cell injection chimaeras was analysed using β-galactosidase expression from an X-linked transgene as a marker to distinguish the ES-derived cell population from the host cells. The number of cells in the different haematopoietic cell subpopulations was determined by flow cytometry. When the proportions of ES-derived cells in the antigen-positive lineages were compared to the ES cell contribution to all cells in the organs, we found an unexpected bias in the haematopoietic differentiation of ES-derived cells. ES descendants were overrepresented in the bone marrow B lymphoid cell population and the splenic myeloid cells but were underrepresented in the CD4-positive T lymphoid cells in the spleen. These results were obtained by comparison with control female animals that were X chromosome mosaic for β-galactosidase expression. These findings of uneven contribution to haematopoietic development by ES cells indicate that the commitment of ES cell descendants may be different from that of the host cells. 相似文献
11.
Unequal Rates of Cell Proliferation in Tetraparental Mouse Chimaeras Derived by Fusion of Early Embryos 总被引:1,自引:0,他引:1
R. D. Barnes Maureen Tuffrey Linda Drury D. Catty 《Differentiation; research in biological diversity》1974,2(5):257-260
In spite of fusion at the early morula stage, tetraparental mouse chimaeras rarely reflect 50:50 mixtures of the two parental strain cell populations. Apart from this, changes are known to occur during life and on occasions this can result in the loss of one or other parental strain cell components.
In spite of roughly 'balanced' mixed coat colour composition and distribution of the gametes, cytogenetic analysis recently revealed an overwhelming preponderance of AKR mitoses in a group of tetraparental AKR↔CBA/H-T6 mouse chimaeras. Cytogenetic analysisis necessarily restricted to cells in division and therefore it was conceivable that this phenomenon may have only represented excessive AKR cell division balanced by an increased rate of AKR cell death. This view now seems unlikely since analysis of both serum allotypes and the red cell isoenzyme glucose phosphate isomerase (GPI) also showed a similar and overwhelming preponderance of AKR cell products. Factors responsible for excessive AKR cell proliferation remain to be determined. However, it should be noted that these were only effective after coat colour and differentiation of the gametes are established. 相似文献
In spite of roughly 'balanced' mixed coat colour composition and distribution of the gametes, cytogenetic analysis recently revealed an overwhelming preponderance of AKR mitoses in a group of tetraparental AKR↔CBA/H-T6 mouse chimaeras. Cytogenetic analysisis necessarily restricted to cells in division and therefore it was conceivable that this phenomenon may have only represented excessive AKR cell division balanced by an increased rate of AKR cell death. This view now seems unlikely since analysis of both serum allotypes and the red cell isoenzyme glucose phosphate isomerase (GPI) also showed a similar and overwhelming preponderance of AKR cell products. Factors responsible for excessive AKR cell proliferation remain to be determined. However, it should be noted that these were only effective after coat colour and differentiation of the gametes are established. 相似文献
12.
小鼠胚胎干细胞是从胚泡未分化的内部细胞团中得到的干细胞,它在体外培养的环境中具有无限增殖、自我更新以及多向分化的特性。将小鼠胚胎干细胞在体外诱导分化为肌肉细胞,并且利用这些分化得来的肌肉细胞治疗肌肉退行性疾病,是干细胞研究领域的热点。该实验的目的在于筛选小鼠胚胎干细胞向骨骼肌细胞定向分化的实验条件,有效地将体外单层贴壁培养的小鼠胚胎干细胞诱导分化成骨骼肌细胞。最终发现,10-8mol/L维甲酸(retinoid acid,RA)+0.5%二甲基亚砜(dimethyl sulfoxide,DMSO)组诱导小鼠胚胎干细胞在体外分化成骨骼肌前体细胞的效率最高,分化得到的骨骼肌前体细胞经进一步纯化,能分化为多核的肌管。该实验为治疗肌肉退行性疾病提供了细胞来源,也为研究小鼠胚胎干细胞分化为骨骼肌细胞的机制提供了有利的条件。 相似文献
13.
Protein Patterns of Early Mouse Embryos During Development 总被引:1,自引:0,他引:1
BRYAN R. CULLEN KIRSTEN EMIGHOLZ JOHN J. MONAHAN 《Differentiation; research in biological diversity》1980,17(1-3):151-160
Using high resolution two-dimensional polyacrylamide gel electrophoresis, the major protein species (labeled in vitro with 35 S-methionine) of mouse embryos were examined starting with the unfertilized egg up to the blastocyst stage (fourth day of development). The analysis was then continued using in vitro culture techniques up to the 10th equivalent gestation day. At all periods of development distinct protein changes could be seen. However, major alterations in the protein synthesis pattern were noted between the 2nd and 3rd day in vivo and around the 8th equivalent gestation day in vitro. A complete series of gels is presented such that proteins can be easily identified in terms of their molecular weights and isoelectric points. 相似文献
14.
胚胎干细胞体外分化为多巴胺能神经元 总被引:1,自引:0,他引:1
近年来,胚胎干细胞在体外分化为多巴胺能神经元方面取得了重大突破,这对神经发生的基础性研究和神经细胞移植具有重要意义。现对胚胎干细胞体外定向诱导分化为多巴胺能神经元的方法、相关细胞因子及检测鉴定等方面进行了分析和比较,并探讨了当前存在的问题和今后发展的方向。 相似文献
15.
16.
无血清无饲养层条件下培养小鼠胚胎干细胞 总被引:2,自引:0,他引:2
目的研究在无血清无饲养层条件下小鼠胚胎干细胞的培养方法,为最终建立无血清无饲养层培养系统打下基础。方法比较小鼠胚胎干细胞ES-S8株在无血清培养体系和有血清培养体系中的生长情况,分析ES-S8细胞克隆形成效率,测定其生长速度;然后在撤去血清和饲养层的条件下培养ES-S8细胞,进行AKP染色和表面标记物SSEA-1免疫荧光检测。结果ES-S8细胞在无血清培养条件下细胞生长速度减缓,克隆形成率降低,但AKP染色、SSEA-1免疫荧光均显阳性;在无血清无饲养层条件下ES-S8细胞培养仍能形成克隆,且AKP染色、SSEA-1免疫荧光均显阳性。结论研究表明ES-S8细胞能够在无血清无饲养层的培养条件下生长,保持其良好的未分化特性。 相似文献
17.
18.
KAZUNORI HANAOKA MICHIKO HAYASAKA TAKEHIKO NOGUCHI YOSHIHIRO KATO 《Development, growth & differentiation》1987,29(3):263-270
An embryonal carcinoma (EC) cell line having the ability to form chimeric mice was isolated from embryo-derived teratocarcinomas experimentally induced in BALB/cCrSlc mice. This EC cell line, B242 g, was one of the 5 EC cell lines pre-selected based on the ability to incorporate into blastocysts by means of aggregating with 8-cell mouse embryos.
Using the B242g EC cells, the effectiveness of producing chimeras was compared between two currently available techniques, aggregation and injection, by examining chimerism of the midgestationally recovered conceptuses and live-born mice. The present result revealed that EC cells studied here were able to form chimeras more efficiently by injection as compared to aggregation method. 相似文献
Using the B242g EC cells, the effectiveness of producing chimeras was compared between two currently available techniques, aggregation and injection, by examining chimerism of the midgestationally recovered conceptuses and live-born mice. The present result revealed that EC cells studied here were able to form chimeras more efficiently by injection as compared to aggregation method. 相似文献
19.
Harold Moreno-Ortiz Clara Esteban-Perez Wael Badran Marijo Kent-First 《Journal of visualized experiments : JoVE》2009,(32)
The ability of embryonic germinal cells (EG) to differentiate into primordial germinal cells (PGCs) and later into gametes during early developmental stages is a perfect model to address our hypothesis about cancer and infertility. This protocol shows how to isolate primordial germinal cells from developing gonads in 10.5-11.5 days post coitum (dpc) mouse embryos. Developing gonadal ridges from mouse embryos (C57BL6J) were dissociated by mechanical disruption with collagenase, then plated in a mouse embryo fibroblast feeder layer (MEF-CF1) that was previously mitotically inactivated with mitomycin C in the presence of knockout media and supplemented with Leukemia Inhibitor Factor (LIF), basic Fibroblast Growth Factor (bFGF), and Stem Cell Factor (SCF). Using these optimized methods for PCG identification, isolation, and establishment of culture conditions permits long term cultures of EG cells for more than 40 days. The embryonic germinal cell lines showed embryonic phenotype and expression of common used markers of the pluripotent state. Isolation and derivation of germinal cells in culture provide a tool to understand their development in vitro and offer the opportunity to monitor cumulative damage at genetic and epigenetic levels after exposure to oxidative stress.Download video file.(316M, mp4) 相似文献
20.
Studying germ cell formation and differentiation has traditionally been very difficult due to low cell numbers and their location deep within developing embryos. The availability of a "closed" in vitro based system could prove invaluable for our understanding of gametogenesis. The formation of oocyte-like cells (OLCs) from somatic stem cells, isolated from newborn mouse skin, has been demonstrated and can be visualized in this video protocol. The resulting OLCs express various markers consistent with oocytes such as Oct4 , Vasa , Bmp15, and Scp3. However, they remain unable to undergo maturation or fertilization due to a failure to complete meiosis. This protocol will provide a system that is useful for studying the early stage formation and differentiation of germ cells into more mature gametes. During early differentiation the number of cells expressing Oct4 (potential germ-like cells) reaches ~5%, however currently the formation of OLCs remains relatively inefficient. The protocol is relatively straight forward though special care should be taken to ensure the starting cell population is healthy and at an early passage. 相似文献