首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Compartmentation and flux characteristics of ammonium in spruce   总被引:1,自引:0,他引:1  
Using 13NH 4 + as a tracer, compartmental analyses for NH 4 + were performed in non-mycorrhizal roots of intact Picea glauca (Moench) Voss. seedlings at four different concentration regimes of external NH 4 + ([NH 4 + ]o), i.e. 0, 10, 100, and 1500 M. Three kinetically distinct compartments were identified, with half-lives of exchange of approximately 2 s, 30 s, and 14 min, assumed to represent surface adsorption, Donnan free space, and cytoplasm, respectively. No significant differences were found in half-lives of exchange with changes in [NH 4 + ]o. Influx was calculated to be 0.96 mol·g–1·h–1 in N-deprived plants (measured at 10 M [NH 4 + ]o), while under steady-state conditions it was 0.21 mol·g–1h–1 at 10 M [NH 4 + ]o, 1.96 mol·g–1–1 at 100 M [NH 4 + ]o, and 6.45 mol·g–1·h–1 at 1.5 mM [NH 4 + ]o. Efflux measured over the same range constituted approximately 9% of influx in N-deprived plants, 10% at 10 M, 28% at 100 M, and 35% at 1.5 mM [NH 4 + ]o. Cytoplasmic [NH 4 + ] was estimated at 6 m M in N-deprived plants, 2 mM at 10 M [NH 4 + ]o, 14 mM at 100 M, and 33 mM at 1.5 mM. Free-space [NH 4 + ] was 84 M, 50 M, 700 M, and 8 mM, respectively. In comparison with previously published data on fluxes and compartmentation of NO 3 in white-spruce seedlings, results of this study identify a pronounced physiological preference of this species for NH 4 + over NO 3 as an inorganic N source in terms of uptake and intracellular accumulation. The significant ecological importance of this N-source preference is discussed.The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. P. Poon for essential assistance in experiments.  相似文献   

2.
Nitrate induction in spruce: an approach using compartmental analysis   总被引:6,自引:0,他引:6  
Using 13NO 3 -efflux analysis, the induction of nitrate uptake by externally supplied nitrate was monitored in roots of intact Picea glauca (Moench) Voss. seedlings over a 5-d period. In agreement with our earlier studies, efflux analysis revealed three compartments, which have been identified as surface adsorption, apparent free space, and cytoplasm. While induction of nitrate uptake was pronounced, NO 3 fluxes in induced plants were decidedly lower and the induction response was slower than in other species. Influx rose from 0.1 mol·g–1·h–1 (measured at 100 M [NO 3 o) in uninduced plants to a maximum of 0.5 mol·g–1h–1 after 3 d of exposure to 100 M [NO 3 o and declined to 0.3–0.4 mol·g–1h–1 at the end of the 5-d period. Efflux remained relatively constant around 0.02-0.04 mol·g–1h–1, but its percentage with respect to influx declined from initially high values (around 30%) to steady-state values of 4–7%. Cytoplasmic [NO 3 ] ranged from the low micromolar in uninduced plants to a maximum of 2 mM in plants fully induced at 100 M [NO 3 ]o. In-vivo root nitrate reductase activity (NRA) was measured over the same time period, and was found to follow a similar pattern of induction as influx. The maximum response in NRA slightly preceded that of influx. It increased from 25 nmol·g–1·h–1 without prior exposure to NO 3 to peak values around 150 nmol· g–1h–1 after 2 d of exposure to 100 M [NO 3 ]o. Subsequently, NRA declined by about 50%. The dynamics of flux partitioning to reduction, to the vacuole, the xylem, and to efflux during the induction process are discussed.The research was supported by an Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia campus for providing 13N, to Drs. R.D. Guy and S. Silim for providing plant material, and to Dr. M.Y. Wang, Mr. J. Bailey, Mr. J. Mehroke and Mr. J. Vidmar for essential assistance in experiments.  相似文献   

3.
Nitrate-selective microelectrodes have been made using a quaternary ammonium sensor, methyl-tridodecylammonium nitrate, in a Polyvinylchloride matrix. These electrodes showed a log-linear response from 0.1 to 100 mol · m?3 nitrate with a typical slope of 55.6 mV per decade change in nitrate concentration. The only physiologically significant interfering anion was chloride but the lower limit of nitrate detection was 0.5 mol · m?3 in the presence of 100 mol · m?3 chloride which means this interference will not be important in most physiological situations. These microelectrodes were used to measure nitrate concentrations in internodal cells of Chara corallina cultured under low nitrate and nitrate-replete conditions for 6 to 30 weeks. Cells maintained in low nitrate only showed measurements which were less than the detection limit of the electrodes, while cells grown under nitrate-replete conditions showed two populations of measurements having means of 1.6 and 6.2 mol · m?3. Chemical analysis of the high-nitrate cells indicated that they contained a mean nitrate concentration of 5.9 mol · m?3. As vacuolar nitrate concentration would dominate this whole-cell measurement, it is concluded that the higher concentration measured with the electrodes represents vacuolar nitrate concentration and the lower value represents the cytoplasmic concentration. This intracellular distribution of nitrate could only be achieved passively if the electrical potential difference across the tonoplast is between +25 and + 35 mV.  相似文献   

4.
5.
Despite the large number of studies of nitrate metabolism in plants, it remains undetermined to what extent this key plant system is controlled by overall plant N nutrition on the one hand, and by the nitrate ion itself on the other hand. To investigate these questions, V max for nitrate uptake (high-affinity range), and nitrate reductase (NR) mRNA and activity, were measured in roots of N-limited barley (Hordeum vulgare L. cv. Golf) grown under conditions of constant relative addition of nitrate, with the seminal roots split between two culture compartments. The total amount of nitrate added per unit time (0.09·d-1) was distributed between the two root parts (subroots) in ratios of 1000, 982, 955, 9010, 8020, and 5050. These nitrate-addition ratios resulted in nitrate fluxes ranging from 0 to 23 mol nitrate·g-1 DW root·h-1, while the external nitrate concentrations varied between 0 and 1.2 M. The apparent V max for net nitrate uptake showed saturation-type responses to nitrate flux maintained during preceding growth. The flux resulting in half-maximal induction of nitrate uptake was approximately 4 mol nitrate·g-1 DW root·h-1, corresponding to an external nitrate concentration of 0.7 M. The activity of NR and levels of NR mRNA did not saturate within the range of nitrate fluxes studied. None of the parameters studied saturated with respect to the steady-state external nitrate concentration. At the zero nitrate addition — the 0%-root — initial uptake activity as determined in short-term 15N-labelling experiments was insignificant, and NR activity and NR mRNA were not detectable. However, nitrate uptake was rapidly induced, showing that the 0%-root had retained the capacity to respond to nitrate. These results suggest that local nitrate availability has a significant impact on the nitrate uptake and reducing systems of a split-root part when the total plant nitrate nutrition is held constant and limiting.Abbreviation NR nitrate reductase This work was supported by the Lars Hierta Memory Foundation, the Royal Swedish Academy of Sciences, and by the Swedish Natural Science Research Council via project grants (to C.-M.L. and B.I.) and visiting scientist grant (to W.H.C.). We thank Mrs. Ellen Campbell for technical advice, and Mrs. Judith V. Purves, Long Ashton Research Station, Long Ashton, UK, for analyses of 15N-labelling in tissue samples.  相似文献   

6.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

7.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

8.
A. Rieger  A. Lutz  R. Hampp 《Planta》1992,187(1):95-102
Quantitative histochemistry was used to investigate the tissue-specific compartmentation of soluble carbohydrates (sucrose, glucose, fructose), starch and malate in the laminar pulvinus, leaf blade and petiole of Phaselous coccineus L. at day and night positions of diurnal leaf movement. Total carbohydrate levels measured in a series of cross sections along individual pulvini of 24-d-old plants showed only small differences between the day and night positions of the respective leaf. In contrast, the level of malate changed during diurnal leaf movement, especially in the central part of a pulvinus. The levels of glucose and fructose in the pulvinus increased towards the transition zones between the pulvinus and lamina, and pulvinus and petiole, and this trend was even more pronounced for starch. By contrast, sucrose levels were highest in the pulvinus proper. The transverse compartmentation of metabolites was studied in distinct, approx. 0.5-mm-thick tissue slices from the central part of a pulvinus. These were dissected further into up to 14 distinct subsamples (bundle, bundle sheath, motor tissues, flanks). Irrespective of the position of the leaf (day or night), the central vascular core and the surrounding bundle sheath had high levels of sucrose (up to 500 mmol-(kg DW)–1) and low levels of glucose and fructose (below 100 mmol-(kg DW)–1), while in the cortex the situation was reversed. In the night position the level of sucrose decreased by approx. 30% in the bundle sheath and the central vascular core but not in the other sections. We thus suggest that because of the relatively small diurnal changes in their cortical pools, soluble sugars are not involved in the osmotic processes resulting in leaf movement. In contrast, pulvini from 14-d-old plants showed an interesting diurnal change in starch and malate pools in the outermost layer of the extensor. Here starch increased at night while the malate pool was lowered nearly stoichiometrically. Inverse pool sizes were found in the day position of the respective leaves. Although less significant, the opposite diurnal variation occurred in samples taken from the flexor region. We thus were able to locate areas of different carbohydrate activities in the laminar pulvinus of P. coccineus. The central vascular core, including the bundle sheath, is involved in temporary storage of photoassimilates, and the cortical regions are responsible for osmotically driven leaf movement. The results are discussed with respect to guard-cell physiology.Abbreviations CLP cut-leaf pulvini - ILP intact-leaf pulvini This work was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

9.
The levels of endogenous gibberellin A1 (GA1), GA3, GA4, GA9 and a cellulase-hydrolysable GA9-conjugate in needles and shoot stems of Sitka spruce [Picea sitchensis (Bong.) Carr.] grafts with different coning or flowering histories were estimated by combined gas chromatography-mass spectrometry selected ion monitoring using deuterated GA3, GA4 and GA9 as internal standards. The samples were taken at the approximate time of the start of flower-bud differentiation, i.e. when the shoots had elongated approx. 95% of the final length. The needles of the good-flowering clones contained 11–12 ng per g fresh weight (FW) and 15–28 ng· (g FW) –1 of GA9-conjugate and GA9, respectively. The shoot stems of the same material contained no detectable amounts of GA9-conjugate and 11–15 ng-(g FW)–1 of GA9. The amounts of GA9-conjugate and GA9 were apparently lower in the poor-flowering clones, the needles containing 4–9 ng-(g FW)–1 and 7–17 ng·(g FW)–1, respectively. Also in this material the shoot stems contained no detectable amounts of GA9-conjugate. The amounts of GA4 were very small in both materials, ranging from 1–1.6 ng-(g FW)–1. The good-flowering clones contained no detectable amounts of the more polar gibberellins, GA1 and GA3. The poor-flowering clones, on the other hand, contained high levels of GA15 17–19ng·(gFW)–1 in the needles and 10–13 ng·(g FW) –1 in the shoot stems, and also smaller amounts of GA3, 2–3 ng·(g FW)–1 in the needles and approx. 1 ng·(g FW)–1 in the shoot stems. The results demonstrate differences in GA-metabolism between the poor- and the good-flowering clones. The higher amounts of GA9-conjugate and GA9 might indicate a higher capacity for synthesizing GA4 in the good-flowering material. This synthesis does not, however, result in a build-up of the GA4-pool, maybe because of a high rate of turnover. Gibberellin A4 was apparently neither hydroxylated to GA1 nor converted to GA3 in the goodflowering material, as was the case in the poor-flowering material. This might indicate that gibberellin metabolism in the poor-flowering material is directed towards GA1 and GA3, GAs preferentially used in vegetative growth.Abbreviations FW fresh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

10.
Maize (Zea mays L.) and pearl millet (Pennisetum americanum (L.) Leeke) seedlings were exposed to [15N]nitrate for 1-h periods at eight times during a 24-h period (16–8 h light-dark for maize; 14–10 h for millet). Influx of [15N]nitrate as well as its reduction and translocation were determined during each period. The efflux of previously absorbed [14N]nitrate to the uptake solution was also estimated. No marked diurnal changes in [14N]nitrate efflux or [15N]nitrate influx were evident in maize. In contrast, [14N]nitrate efflux from millet increased and eventually exceeded [15N]nitrate influx during the late dark and early light periods, resulting in net nitrate efflux from the roots. The dissimilarity of their diurnal patterns indicates that influx and efflux are independently regulated. In both species, [15N]nitrate reduction and 15N translocation to shoots were curtailed more by darkness than was [15N]nitrate influx. In the light, maize reduced 15% and millet 24% of the incoming [15N]nitrate. In darkness, reduction dropped to 11 and 17%, respectively. Since the accumulation of reduced-15N in shoots declined abruptly in darkness, whereas that in roots was little affected, it is suggested that in darkness [15N]nitrate reduction occurred primarily in roots. The decrease in nitrate uptake and reduction in darkness was not related to efflux, which remained constant in maize and did not respond immediately to darkness in pearl millet.Paper No. 6722 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh  相似文献   

11.
Using pulses of nitrate, instead of the permanent presence of external nitrate, to induce the nitrate-assimilating system in Hordeum vulgare L., we demonstrated that nitrate can be considered as a trigger or signal for the induction of nitrate uptake, the appearance of nitratereductase activity and the synthesis of mRNA coding for nitrate reductase. Nitrate pulses stimulated the initial rate of nitrate uptake, even after subsequent cultivation in N-free medium, and resulted in a higher acceleration of the uptake rate in the presence of nitrate than in its absence.Abbreviations NR nitrate reductase  相似文献   

12.
Nitrate uptake in Chlorella saccharophila (Krüger) Nadson was found to be stimulated by blue light, leading to a doubling of the rate. In the presence of background red light (300 mol photons · m-2 · s-1), only 15–20 mol photons · m-2 · s-1 of blue light was sufficient to saturate this increased uptake rate. Incubation of Chlorella cells with anti-nitrate-reductase immunoglobulin-G fragments inhibited blue-light stimulation. However, ferricyanide (10 M) doubled and dithiothreitol (100 M) inhibited the stimulatory effect of blue light. Among the protein-kinase inhibitors used, only staurosporine (10 M) prevented the blue-light stimulation. Phosphatase inhibitors were without effect and sodium vanadate totally inhibited nitrate uptake, pointing to an involvement of the plasma-membrane ATPase. Preincubation of the cells with calmodulin antagonists or calcium ionophores did not significantly reduce blue-light stimulation of nitrate uptake. The data are discussed with regard to transduction of the signal for blue-light stimulation of nitrate uptake and the possibility that the plasma-membrane-bound nitrate reductase is the blue-light receptor.Abbreviations Chl chlorophyll - DMSO dimethylsulfoxide - 1,2-DHG 1,2-dihexanoylglycerol - ML-9 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine - NR nitrate reductase - H-7 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine - IgG immunoglobulin G - PFD photon flux density - PM plasma membrane - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide This work was supported by a grant from the Deutsche Forschungs-gemeinschaft to R.T.  相似文献   

13.
Field and laboratory observations of the relationships between the performance of Elatobium abietinum (Walker), Homoptera, Aphididae, and various species of spruce were undertaken from January 1980 to April 1981. The study included sampling for aphids in established field plots of spruce during May and June respectively before and after the migration period in spring. The aphid's performance (weight and mean relative growth rate) at different seasons on pot grown plants of selected spruce species was monitored, covering, in all, 20 species of spruce.Aphid performance was greatest on the North American spruces, especially Picea sitchensis (Bong) Carr and P. mexicana Martinez; the Asian spruces were the least favoured, especially P. glehnii (Schmidt) Mast. Between these two geographical groups the Eurasian spruce species (sensu Wright, 1955) demonstrated an intermediate aphid performance.
Résumé Les observations dans la nature et au laboratoire sur les performances d'E. abietinum Walker et différentes espèces d'épicéas ont été effectuées de janvier 1980 à avril 1981. Les observations dans la nature comprenaient des prélèvements de pousses d'épicéa pour dénombrer les pucerons avant (mai) et après (juin) la période de migration du printemps. Les performances des pucerons (poids et taux moyen de croissance relative) ont été examinées à différentes saisons sur des plantes en pot sur un total de 20 espèches sélectionnées d'épicéas.Les performances du puceron ont été supérieures sur les espèces d'épicéa de l'Amérique du nord Picea sitchensis et P. mexicana; les espèces asiatiques étaient les moins favorables, particulièrement P. glehnii. Entre ces deux groups géographiques, les espèces eurasiennes (sensu Wright, 1955) ont permis des performances intermédiares chez les pucerons.
  相似文献   

14.
Maize (Zea mays L.) grown on low (0.8 mM) NO 3 - , as well as untransformed and transformed Nicotiana plumbaginifolia constitutively expressing nitrate reductase (NR), was used to study the effects of NO 3 - on the NR activation state. The NR activation state was determined from the relationship of total activity extracted in the presence of ethylenediaminetetracetic acid to that extracted in the presence of Mg2+. Light activation was observed in both maize and tobacco leaves. In the tobacco lines, NO 3 - did not influence the NR activation state. In excised maize leaves, no correlation was found between the foliar NO 3 - content and the NR activation state. Similarly, the NR activation state did not respond to NO 3 - . Since the NR activation state determined from the degree of Mg2+-induced inhibition of NR activity is considered to reflect the phosphorylation state of the NR protein, the protein phosphatase inhibitor microcystin LR was used to test the importance of protein phosphorylation in the NO 3 - -induced changes in NR activity. In-vivo inhibition of endogenous protein phosphatase activity by microcystin-LR decreased the level of NR activation in the light. This occurred to the same extent in the presence or absence of exogenous NO 3 - . We conclude that NO 3 - does not effect the NR activation state, as modulated by protein phosphorylation in either tobacco (a C3 species) or maize (a C4 species). The short-term regulation of NR therefore differs from the NO 3 - -mediated responses observed for phosphoenolpyruvate carboxylase and sucrose phosphate synthase.Abbreviations Chl chlorophyll - MC microcystin-LR - PEP-Case phosphoenolpyruvate carboxylase - SPS sucrose-phosphate synthase We are indebted to Madeleine Provot and Nathalie Hayes for excellent technical assistance. This work was funded by EEC Biotechnology Contract No. BI02 CT93 0400, project of technical priority, Network D — Nitrogen Utilisation and Efficiency.  相似文献   

15.
A bundle of optical fibres and a photometer were used to measure light transmission through bud scales of Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus silvestris L.). Percentage transmission increases with wavelength from none below 480 nm to 3% the far-red. Transmission of all wavebands measured was lowest in late summer and winter and highest in the autumn and spring. For most of the year in pine, and only from July to September in spruce, there is a depression of red light (660–670 nm) transmission. This affects the ratio of 660/730 nm light penetrating the apical domes. This ratio is lowest in July and August, at the time of initiation of female strobili. The seasonal variation in transmission of light by bud scales is discussed in relation to the possible consequences for the control of flowering.  相似文献   

16.
Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrite uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.Abbreviations EDTA ethylenediaminetetraacetic acid - FAD flavine-adenine dinucleotide - IgG immunoglobulin G - NR nitrate reductase - PM plasma membrane - TX-100 Triton X-100  相似文献   

17.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   

18.
Summary Chloroplast DNA (cpDNA) was purified from blue spruce (Picea pungens Engelm.) and white spruce [P. glauca (Moench) Voss], and was digested with several different restriction endonucleases. Restriction fragment length polymorphisms (RFLPs) were identified that differentiated the cpDNA of both species. Intraspecific conservation of the RFLPs that differentiated each species was confirmed by examining trees from across the natural range of each species. Ten F1 hybrids were examined, and the cpDNA from each showed the banding pattern of the paternal species. Cloned Petunia cpDNA containing part of the rbcL gene hybridized to polymorphic bands, while a cloned maize mtDNA probe of the coxII gene failed to hybridize to any band.  相似文献   

19.
The localization of nitrate reductase (NR; EC 1.6.6.2) in cells of root tissues ofZea mays L. (W64A W182L) was determined using post-embedding immunogold labeling at the electron-microscopy level and using silver enhancement of the colloidal-gold signal for light microscopy. Nitrate reductase is located in the cytoplasm of root epidermal and cortical cells, and in the cells of the parenchyma and pericycle within the vascular cylinder. A weaker signal was also obtained in parenchymal cells of the pith lying next to the xylem. A positive signal for NR protein was seen in the chloroplast fraction of maize leaves and in the plastid fraction of roots. This signal was lost when affinity-purified antibodies were used. Sections of Lowicryl-embedded tissue were found to be suitable for the localization of the non-abundant NR protein when adequate controls and signal-enhancement procedures were used.Abbreviations IgG immunoglobulin G - NR nitrate reductase - PEPCase phosphoenolpyruvate carboxylase This research was funded by Natural Sciences and Engineering Research Council (NSERC) of Canada grants ISE0125461 (AO), OGP0106265 (JSG) and an NSERC Visiting Scientist Award to E.F.  相似文献   

20.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号