首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thrombin is a multifunctional protease that plays a key role in hemostasis, thrombosis, and inflammation. Most thrombin inhibitors currently used as antithrombotic agents target thrombin''s active site and inhibit all of its myriad of activities. Exosites 1 and 2 are distinct regions on the surface of thrombin that provide specificity to its proteolytic activity by mediating binding to substrates, receptors, and cofactors. Exosite 1 mediates binding and cleavage of fibrinogen, proteolytically activated receptors, and some coagulation factors, while exosite 2 mediates binding to heparin and to platelet receptor GPIb-IX-V. The crystal structures of two nucleic acid ligands bound to thrombin have been solved. Previously Padmanabhan and colleagues solved the structure of a DNA aptamer bound to exosite 1 and we reported the structure of an RNA aptamer bound to exosite 2 on thrombin. Based upon these structural studies we speculated that the two aptamers would not compete for binding to thrombin. We observe that simultaneously blocking both exosites with the aptamers leads to synergistic inhibition of thrombin-dependent platelet activation and procoagulant activity. This combination of exosite 1 and exosite 2 inhibitors may provide a particularly effective antithrombotic approach.  相似文献   

2.
Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.  相似文献   

3.
Corroles that bind with high affinity to both apo and holo transferrin   总被引:1,自引:0,他引:1  
The interactions of transferrin (Tf) with the water soluble corrole 1 and with its gallium (1-Ga) and manganese (1-Mn) complexes were studied to establish the possible utilization of corrole-transferrin conjugates for targeting these corroles to cells that express the transferrin receptor. The protein, in both its iron-free apo form (apoTf) and the iron-bound holo form (holoTf), was found to spontaneously bind all three derivatives. This conclusion was reached from titrations followed by several spectroscopic methods and dilution experiments measured by fluorescence. The such elucidated very small dissociation constant of 2 x 10(-7) M and 3 x 10(-8) M for 1-Ga with apoTf and holoTf, respectively and <10(-9) M for 1 with both protein forms are clearly relevant for the physiological concentration of transferrin in serum.  相似文献   

4.
Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.  相似文献   

5.
A soluble radioreceptor assay has been developed to characterize thrombin receptor activities of the human platelet membrane. 125I-Thrombin was added to platelet membranes solubilized in 1% Triton X-100, and thrombin bound to platelet receptors was separated from free thrombin by precipitation with wheat germ agglutinin (WGA) in the presence of alpha 1-acid glycoprotein as carrier. Both high affinity binding (Ki, 0.09 nM; R1, 0.30 pmol/mg protein) and moderate affinity binding (K2, 38 nM; R2, 72 pmol/mg protein) were detected in the detergent-solubilized membrane preparations and these binding parameters were in excellent agreement with values previously determined using intact platelets (Harmon, J. T., and Jamieson, G. A. (1985) Biochemistry 24, 58-64). Using the soluble radioreceptor assay, both high and moderate affinity binding was detected in highly purified preparations of glycoprotein Ib (GPIb) and glycocalicin, and the binding isotherms were identical with those of the crude detergent-solubilized membrane preparation. Treatment of detergent-solubilized membranes with increasing concentrations of a monospecific polyclonal antibody to glycocalicin resulted in the stepwise depletion of GPIb and concomitant reductions of thrombin binding activity. These results demonstrate that both high and moderate affinity binding of thrombin to platelets is completely expressed in the glycocalicin portion of GPIb.  相似文献   

6.
Bothrojaracin, a 27-kDa C-type lectin from Bothrops jararaca venom, is a selective and potent thrombin inhibitor (K(d) = 0.6 nM) which interacts with the two thrombin anion-binding exosites (I and II) but not with its catalytic site. In the present study, we analyzed the allosteric effects produced in the catalytic site by bothrojaracin binding to thrombin exosites. Opposite effects were observed with alpha-thrombin, which possesses both exosites I and II, and with gamma-thrombin, which lacks exosite I. On the one hand, bothrojaracin altered both kinetic parameters K(m) and k(cat) of alpha-thrombin for small synthetic substrates, resulting in an increased efficiency of alpha-thrombin catalytic activity. This effect was similar to that produced by hirugen, a peptide based on the C-terminal hirudin sequence (residues 54-65) which interacts exclusively with exosite I. On the other hand, bothrojaracin decreased the amidolytic activity of gamma-thrombin toward chromogenic substrates, although this effect was observed with higher concentrations of bothrojaracin than those used with alpha-thrombin. In agreement with these observaions, bothrojaracin produced opposite effects on the fluorescence intensity of alpha- and gamma-thrombin derivatives labeled at the active site with fluorescein-Phe-Pro-Arg-chloromethylketone. These observations support the conclusion that bothrojaracin binding to thrombin produces two different structural changes in its active site, depending on whether it interacts exclusively with exosite II, as seen with gamma-thrombin, or with exosite I (or both I and II) as observed with alpha-thrombin. The ability of bothrojaracin to evoke distinct modifications in the thrombin catalytic site environment when interacting with exosites I and II make this molecule an interesting tool for the study of allosteric changes in the thrombin molecule.  相似文献   

7.
Abstract: This work represents the first evidence of the presence of an iron uptake system siderophore mediated in the bacterial fish pathogen Yersinia ruckeri . A group of 20 strains representative of this species, with different serotype and origin were examined. All of them were able to grow at high concentrations (from 0.7 to 1.1 mM) of the iron chelator EDDA. Although the Y. ruckeri isolates failed to cross-feed the indicator strains for enterobactin and aerobactin production, the chemical tests revealed the presence in the culture supernatants of phenolate siderophores. At least three outer membrane proteins were induced in iron limiting conditions. All the strains showed a similar pattern of induced membrane proteins regardless their serotype or origin, which suggests a similarity in the iron uptake system. This system could have an important role in the pathogenicity of Y. ruckeri for fish.  相似文献   

8.
The GTPase Der is universally conserved in bacteria and is structurally unique as it consists of two GTP-binding domains in tandem (G-domain 1 and G-domain 2) whereas all the other GTPases posses a single GTPase domain. In order to assess the function of Der we have fractionated whole cell lysates containing over expressed Der. This analysis indicated that Der was present in sucrose gradient fractions containing membrane proteins. The interaction with the membrane fraction was specific for Der, since the related GTPase, Era, did not form the membrane complex. In addition, three independent criteria suggested a high affinity interaction; (1) the interaction can be detected under partially denaturing conditions using a gel electrophoresis co-migration assay, (2) the interaction survived 16 h sucrose gradient centrifugation, and (3) the complex could be efficiently reconstituted from purified components. Microscopic examination of cells containing over expressed Der showed that the cell wall structure was disrupted at both cell poles. This phenotype required Der domain three since domain deletion mutations showed no affect on cell wall structure. Surprisingly point mutations that ablate nucleotide binding of either GTP binding domain result in a defect in cell wall structure at only a single cell pole. The data reported here were considered together with results presented previously to suggest that Der may engage in a functional cyclic interaction between ribosomes and the membrane in Escherichia coli.  相似文献   

9.
Fibrin (Fn) enhances plasminogen (Pg) activation by tissue-type plasminogen activator (tPA) by serving as a template onto which Pg and tPA assemble. To explore the contribution of the Pg/Fn interaction to Fn cofactor activity, Pg variants were generated and their affinities for Fn were determined using surface plasmon resonance (SPR). Glu-Pg, Lys-Pg (des(1-77)), and Mini-Pg (lacking kringles 1-4) bound Fn with K(d) values of 3.1, 0.21, and 24.5 μm, respectively, whereas Micro-Pg (lacking all kringles) did not bind. The kinetics of activation of the Pg variants by tPA were then examined in the absence or presence of Fn. Whereas Fn had no effect on Micro-Pg activation, the catalytic efficiencies of Glu-Pg, Lys-Pg, and Mini-Pg activation in the presence of Fn were 300- to 600-fold higher than in its absence. The retention of Fn cofactor activity with Mini-Pg, which has low affinity for Fn, suggests that Mini-Pg binds the tPA-Fn complex more tightly than tPA alone. To explore this possibility, SPR was used to examine the interaction of Mini-Pg with Fn in the absence or presence of tPA. There was 50% more Mini-Pg binding to Fn in the presence of tPA than in its absence, suggesting that formation of the tPA-Fn complex exposes a cryptic site that binds Mini-Pg. Thus, our data (a) indicate that high affinity binding of Pg to Fn is not essential for Fn cofactor activity, and (b) suggest that kringle 5 localizes and stabilizes Pg within the tPA-Fn complex and contributes to its efficient activation.  相似文献   

10.
This work represents the first evidence of the presence of an iron uptake system siderophore mediated in the bacterial fish pathogen Yersinia ruckeri. A group of 20 strains representative of this species, with different serotype and origin were examined. All of them were able to grow at high concentrations (from 0.7 to 1.1 mM) of the iron chelator EDDA. Although the Y. ruckeri isolates failed to cross-feed the indicator strains for enterobactin and aerobactin production, the chemical tests revealed the presence in the culture supernatants of phenolate siderophores. At least three outer membrane proteins were induced in iron limiting conditions. All the strains showed a similar pattern of induced membrane proteins regardless their serotype or origin, which suggests a similarity in the iron uptake system. This system could have an important role in the pathogeneicity of Y. ruckeri for fish.  相似文献   

11.
In the present study we investigate the fibrin(ogen)-endothelial cell binding and the effect of thrombin on the endothelial cells in relation to fibrin(ogen) binding capacity. Endothelial cell fibrinogen binding was concentration and time-dependent, reaching saturation at 1.4 M of added ligand. At equilibrium, the number of fibrinogen molecules bound per endothelial cell in the monolayer was 5.8±0.7×106. When endothelial cells were activated by different concentrations of thrombin (0–0.1 NIH units ml–1), no increase in fibrinogen binding capacity was observed at all the thrombin concentration tested. Whereas disruption of endothelial cell monolayers was observed at thrombin concentrations higher than 0.05 NIH units ml–1, no increase in the amount of fibrinogen bound was observed. Therefore, resting and thrombin-activated endothelial cells show the same fibrinogen binding capacity.The adhesion of endothelial cells in suspension on immobilized fibrinogen or fibrin was studied to ascertain whether the behavior of fibrin is similar to that of fibrinogen. The extent of endothelial cell attachment to immobilized fibrinogen and fibrin was similar (4275±130 cells cm–2 for fibrinogen and 4350±235 cells cm–2 for fibrin) and represent approximately 40% of the added endothelial cells. However, endothelial cell adhesion to immobilized fibrin was significantly faster than endothelial cell adhesion to immobilized fibrinogen. The maximum binding rate was 66±9 and 46±8 cells cm–2 min–1 for fibrin and fibrinogen, respectively. Therefore, the fibrinopeptides released by thrombin from fibrinogen induce qualitative changes which enhance the fibrin interaction with the endothelial cells.  相似文献   

12.
Carnosine, anserine and copper(II) ion all bind to specific sites on bovine serum albumin, and, in addition, both dipeptides chelate copper(II) ion in the absence of serum albumin. Thus a solution of dipeptide, copper(II) ion and serum albumin exhibits several complexes that arise from the competing binding reactions. Since a change in this complex equilibrium might occur in Wilson's disease, we have investigated the reactions between the various complexes with NMR and ESR spectroscopy. Serum albumin simultaneously binds the copper(II) ion and carnosine to separate sites rather than forming a mixed chelate, but carnosine still is capable of competing with serum albumin for subsaturating amounts of copper.  相似文献   

13.
14.
The binding of biologically active [125I]thyrotropin to purified plasma membranes prepared from bovine thyroid glands was studied. At 4°C, specific binding reached a maximum after 2 h of incubation and a plateau was maintained for up to 20 h. Degradation of [125I]thyrotropin was undetectable after 2 h of incubation and was only 10% of the total after 20 h.At pH 6.0, at which binding was maximal, a single class of binding sites, having a dissociation constant of approx. 25 nM, was evident. Dissociation studies revealed first order kinetics with a half-time of 2–3 min. At pH 7.5, binding curves were complex, suggesting two orders of binding sites with dissociation constants of approx. 200 nM and 80 pM. Further, at this pH, dissociation of the thyrotropin from its receptor was also complex, suggesting the presence of two first order reactions, one with a half-time similar to that seen at pH 6.0 and another with a half-time of 4 h. At both pH 6.0 and 7.5, insulin, glucagon, growth hormone, and prolactin were without effect on [125I]thyrotropin binding.Similar high affinity and low affinity binding sites were seen with porcine thyroid membranes, but only low affinity sites were seen with either rat liver membranes or human cultured lymphocytes.  相似文献   

15.
Studies on the mechanism of thrombin. Interaction with fibrin   总被引:9,自引:0,他引:9  
Fibrin monomer Sepharose was used to investigate the interactions of thrombin with fibrin. Thrombin binding was found to be reversible and saturable and to depend on the thrombin: fibrin ratio. Scatchard analysis indicated a single class of binding sites with K alpha = 4.9 X 10(5) M-1. Ca2+ ions caused rapid desorption and elution of thrombin from fibrin monomer, and the Ca2+ concentration needed for maximal desorption depended on the fibrin:thrombin ratio. Mg2+, Mn2+, and Sr2+ also released thrombin from fibrin monomer but not as efficiently as Ca2+. These results indicate that divalent metal ions induce a physical change in fibrin monomer which results in desorption of thrombin. Thrombin binding to fibrin in a gel was compared to binding to fibrin monomer. These studies showed that as fibrin monomers polymerize to form the gel network, thrombin is released. Under static conditions the released thrombin remains associated with the gel because diffusion is limited by the gel. However, the thrombin can be readily removed when buffer is allowed to flow through the gel. These results lead to the possibility that thrombin binding to fibrin monomer and its subsequent release, either by Ca2+ or by polymerization, may have important consequences for regulating the effective thrombin concentration in vivo.  相似文献   

16.
We have investigated the interaction of mouse (m) IgE with its Fc epsilon RI on rat basophilic leukemia cells using a set of chimeric Ig that were constructed by exchanging homologous H chain C domains between human (hu) IgG1 and mIgE. Binding affinities were examined with equilibrium and kinetic measurements, and we found that epsilon/C gamma 3 (mIgE with C epsilon 4 replaced by C gamma 3) was indistinguishable from mIgE. The huIgG1 and the other chimeric Ig, which did not contain both C epsilon 2 and C epsilon 3, did not bind detectably to rat basophilic leukemia cells (Ka less than 10(6) M-1). The ability of these chimeric Ig to stimulate a cellular response (degranulation) in the presence of multivalent Ag was also tested. The epsilon/C gamma 3 was indistinguishable from mIgE in eliciting a high level of degranulation, whereas the other chimeric Ig stimulated no response even when they were preaggregated to enhance their binding avidity. These results demonstrate that C epsilon 4 may be replaced by C gamma 3 without affecting the binding and cell activating properties of mIgE. The lack of binding by the other chimeric Ig indicates that both C epsilon 2 and C epsilon 3 are necessary for the binding interaction.  相似文献   

17.
Concanavalin A dimer interacts with fibrinogen and soluble fibrin at pH 5.2 Analysis of the binding data shows that there are in both cases four binding sites per molecule and that the dissociation constant does not change by removal of fibrinopeptides A and B. Ultracentrifugal studies shows that no aggregates of fibrinogen or fibrin are formed through concanavalin A binding and that up to four molecules of concanavalin A dimer can be bind to one molecule of fibrinogen or fibrin. These results imply that the four carbohydrate chains in the molecule are accessible to concanavalin A dimer. There is a diminution in the coagulation of fibrinogen by thrombin at low relative lectin concentrations and an increase at high concentrations. However, the lectin always favours the aggregation of fibrin monomers and does not have any inhibitory effect on the release of fibrinopeptides. We conclude that the electric charge in the neighbourhood of the carbohydrate in both chains, Bβ and γ plays an important role in the attraction between monomeric fibrin and fibrinogen-monomeric fibrin. The different effect of concanavalin A on the coagulation, depending on the relative concentration of the lectin, would be the result of the screening of this electric charge favouring either the interaction of fibrinogen-monomeric fibrin or the polymerization of monomeric fibrin.  相似文献   

18.
19.
Although the immune system has long been implicated in the control of cancer, evidence for specific and efficacious immune responses in human cancer has been lacking. In the case of chronic myelogenous leukemia (CML), either allogeneic bone marrow transplant (BMT) or interferon-alpha2b (IFN-alpha2b) therapy can result in complete remission, but the mechanism for prolonged disease control is unknown and may involve immune anti-leukemic responses. We previously demonstrated that PR1, a peptide derived from proteinase 3, is a potential target for CML-specific T cells. Here we studied 38 CML patients treated with allogeneic BMT, IFN- alpha2b or chemotherapy to look for PR1-specific T cells using PR1/HLA-A*0201 tetrameric complexes. There was a strong correlation between the presence of PR1-specific T cells and clinical responses after IFN-alpha and allogeneic BMT. This provides for the first time direct evidence of a role for T-cell immunity in clearing malignant cells.  相似文献   

20.
Previous results indicate extensive similarity of the active site regions of thrombin (EC 3.4.21.5) and Thrombin Quick, a congenital dysthrombin. A binding defect of Thrombin Quick toward fibrinogen is indicated by an increased KI when fibrinogen is present as a competitive inhibitor in the hydrolysis of tosyl-Gly-Pro-Arg-p-nitroanilide. In the present study, Thrombin Quick I is shown to have an activity of 1.3 and 34%, respectively, toward fibrinogen and prothrombin. Like the activity observed in prothrombin hydrolysis, Thrombin Quick I was 30% as effective as thrombin in stimulating release of thromboxane from platelets. Thrombin Quick was 1.7 and 2.4%, as effective as thrombin in stimulating platelet aggregation and prostacyclin production, respectively. Based on the activity of Thrombin Quick I in the reactions investigated, it is concluded that 1) the three cellular responses studied are initiated by proteolytic action of thrombin, 2) thrombin stimulation of aggregation and thromboxane release from platelets occurs via two different receptors, 3) the thrombin cellular interaction resulting in platelet aggregation and prostacyclin release must involve the thrombin active site as well as a secondary binding site required for optimal interaction with fibrinogen, and 4) the release of thromboxane from platelets does not involve the interaction of thrombin at the extrinsic binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号