首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The refuge plus high-dose strategy for resistance management assumes that the frequency of resistance alleles is low. We used an F2 screen to estimate the frequency of resistance to transgenic corn that produces Bacillus thuringiensis Berliner Cry1Ab toxin (Bt corn) in an Iowa population of European corn borer, Ostrinia nubilalis (Hübner). We also proposed a modification to the statistical analysis of the F2 screen that extends its application for nonuniform prior distributions and for repeated sampling of a single population. Based on a sample of 188 isofemale lines derived from females caught at light traps during the 2nd flight of 1997, we show with 95% confidence that the frequency of resistance to Bt corn was <3.9 x 10(-3) in this Iowa population. These results provide weak evidence that the refuge plus high-dose strategy may be effective for managing resistance in O. nubilalis to Bt corn. Partial resistance to Cry1Ab toxin was found commonly. The 95% CI for the frequency of partial resistance were [8.2 x 10(-4), 9.4 x 10(-3)] for the Iowa population. Variable costs of the method were 14.90 dollars per isofemale line, which was a reduction of 25% compared with our initial estimate.  相似文献   

2.
The high-dose refuge resistance management strategy is the main approach used to delay resistance in targeted pests to Bacillus thuringiensis (Bt) toxins in transgenic crops. We used an F2 screen to test a critical assumption of the high-dose refuge strategy, which is that resistance allele (R) frequencies are initially rare (<10(-3)) in Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) from the southern Corn Belt. We expanded the methodological scope of the F2 screen so that both males and females may be used to initiate a screen and determined how the results from both sexes may be combined. In total, 62 female and 131 male O. nubilalis lines from Kansas and 39 female and four male lines from Texas were screened. No major resistance alleles were found and estimated R frequency for the southern Corn Belt was updated to between 0 and 0.0044 with 95% credibility. The experiment-wise detection probability was 98.7%. These results suggest the frequency of resistance alleles is low enough that the high-dose refuge resistance management strategy may be effective for delaying resistance evolution in O. nubilalis to Bt corn in the southern Corn Belt.  相似文献   

3.
The large-scale cultivation of transgenic crops producing Bacillus thuringiensis (Bt) toxins have already lead to the evolution of Bt resistance in some pest populations targeted by these crops. We used the F2 screening method for further estimating the frequency of resistance alleles of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), to Bt maize, Zea mays L., producing the Cry1Ab toxin. In France, Germany, and Italy, 784, 455, and 80 lines of European corn borer were screened for resistance to Mon810 maize, respectively. In Slovakia, 26 lines were screened for resistance to the Cry1Ab toxin. The cost of F2 screen performed in the four countries varied from U.S. dollars 300 to dollars 1300 per line screened. The major difference in cost was mostly due to a severe loss of univoltine lines during the screen in Germany and Slovakia. In none of the screened lines did we detect alleles conferring resistance to Mon810 maize or to the Cry1Ab toxin. The frequency of resistance alleles were < 1.0 x 10(-3), < 1.6 x 10(-3), < 9.2 x 10(-3), and < 2.6 x 10(-2) in France, Germany, Italy, and Slovakia, with 95% probability, respectively. The average detection probability over all lines was approximately 90%. Making the assumption that European corn borer populations in these countries belong to the same genetic entity, the frequency of alleles conferring resistance to the Cry1Ab produced by the Mon810 maize in western and central Europe was 1.0 x 10(-4), with a 95% confidence interval of 0-3.0 x 10(-4).  相似文献   

4.
Transgenic maize [Zea mays L. (Poaceae)] expressing Bacillus thuringiensis proteins (Bt maize) has become the most important tool for managing stalk borers in maize in the USA. The current strategy for delaying the evolution of resistance in target insects for Bt maize is referred to as high dose/refuge strategy. A key requirement of the strategy is that initial resistance allele frequencies in field insect populations are low (e.g., <0.001). More than 200 iso‐line families of the southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), a major target stalk borer pest of Bt maize, were developed from Louisiana populations and evaluated for Bt resistance using a modified F2 screening method during 2005. No major resistance alleles were detected in these populations. The results showed that the expected Bt resistance allele frequency in the Louisiana populations was <0.0035 with 95% probability and a detection power of 83.9 ± 0.6%. The F2 screen indicates that Bt resistance allele frequencies in D. grandiosella are low among the Louisiana populations and should meet the rare resistance allele requirement of the ‘high dose/refuge’ strategy.  相似文献   

5.
Transgenic Bacillus thuringiensis (Bt) corn, Zea mays L., has been widely used to manage a corn borer complex in the mid-southern region of the United States. The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), has become a dominant cornstalk boring species in some areas of this region, especially in Louisiana. Therefore, management of sugarcane borer resistance to Bt corn is critical to ensure the long-term sustainability of Bt corn for the region. This study screened 280 two-parent family-lines of sugarcane borer from four geographical populations in Louisiana during 2005 to determine whether Bt resistance allele frequency in sugarcane borer is sufficiently low to meet the rare resistance assumption of the current "high dose/refuge" resistance management strategy for Bt corn. These sugarcane borer family-lines were examined for Bt resistance by using novel F2 screening procedures. No major Bt resistance alleles were detected in these four populations. The estimated frequency of major Bt resistance alleles was < 0.0027, with a 95% probability and a detection power of 94%. The estimated minor resistance allele frequency was 0.0063, with a 95% CI of 0.0025-0.0117. During a previous study, a major Bt resistance allele was detected in one individual from 213 family-lines of another Louisiana population of sugarcane borer. Combining these data with the current screen, the frequency of major Bt resistance alleles across the five populations was 0.001, with a 95% credibility interval of 0.0001-0.0028 and a detection power of 95%. Major Bt resistance allele frequencies in Louisiana sugarcane borer populations seem to be low, and they should support the rare resistance allele requirement of the high dose/refuge strategy.  相似文献   

6.
We constructed a reaction-diffusion model of the development of resistance to transgenic insecticidal Bt crops in pest populations. Kostitzin’s demo-genetic model describes local interactions between three competing pest genotypes with alleles conferring resistance or susceptibility to transgenic plants, the spatial spread of insects being modelled by diffusion. This new approach makes it possible to combine a spatial demographic model of population dynamics with classical genetic theory. We used this model to examine the effects of pest dispersal and of the size and shape of the refuge on the efficiency of the “high-dose/refuge” strategy, which was designed to prevent the development of resistance in populations of insect pests, such as the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera, Crambidae). We found that, with realistic combinations of refuge size and pest dispersal, the development of resistance could be considerably delayed. With a small to medium-sized farming area, contiguous refuge plots are more efficient than a larger number of smaller refuge patches. We also show that the formal coupling of classical Fisher–Haldane–Wright population genetics equations with diffusion terms inaccurately describes the development of resistance in a spatially heterogeneous pest population, notably overestimating the speed with which Bt resistance is selected in populations of pests targeted by Bt crops.  相似文献   

7.
Globally, the estimated total area planted with transgenic plants producing Bacillus thuringiensis (Bt) toxins was 12 million hectares in 2001. The risk of target pests becoming resistant to these toxins has led to the implementation of resistance-management strategies. The efficiency and sustainability of these strategies, including the high-dose plus refuge strategy currently recommended for North American maize, depend on the initial frequency of resistance alleles. In this study, we estimated the initial frequencies of alleles conferring resistance to transgenic Bt poplars producing Cry3A in a natural population of the poplar pest Chrysomela tremulae (Coleoptera: Chrysomelidae). We used the F(2) screen method developed for detecting resistance alleles in natural pest populations. At least three parents of the 270 lines tested were heterozygous for a major Bt resistance allele. We estimated mean resistance-allele frequency for the period 1999-2001 at 0.0037 (95% confidence interval = 0.00045-0.0080) with a detection probability of 90%. These results demonstrate that (i) the F(2) screen method can be used to detect major alleles conferring resistance to Bt-producing plants in insects and (ii) the initial frequency of alleles conferring resistance to Bt toxin can be close to the highest theoretical values that are expected prior to the use of Bt plants if considering fitness costs and typical mutation rates.  相似文献   

8.
The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn hybrids that express toxins from Bacillus thuringiensis, referred to as Bt corn, has suppressed corn borer populations and reduced the pest status of this insect in parts of the Corn Belt. Continued suppression of this pest, however, will depend on managing potential resistance to Bt corn, currently through the high-dose refuge (HDR) strategy. In this review, we describe what has been learned with regard to O. nubilalis resistance to Bt toxins either through laboratory selection experiments or isolation of resistance from field populations. We also describe the essential components of the HDR strategy as they relate to O. nubilalis biology and ecology. Additionally, recent developments in insect resistance management (IRM) specific to O. nubilalis that may affect the continued sustainability of this technology are considered.  相似文献   

9.
The high-dose/refuge strategy is considered as the main strategy for delaying resistance in target pests to genetically modified crops that produce insecticidal proteins derived from Bacillus thuringiensis Berliner. This strategy is based on a key assumption that resistance alleles are initially rare (<10(-3)). To test this assumption, we used an F2 screen on natural populations of Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) from Greece and Spain. In total, 75 lines from Greece and 85 lines from Spain were screened for survival of F2 larvae on Cry1Ab corn, Zea mays L., leaves. No major resistance alleles were found. The frequency of resistance alleles in the Greek population was <9.7 x 10(-3) with 95% probability, which was very similar to that of the Spanish population (<8.6 x 10(-3) with 95% probability), and the expected frequencies were 3.2 x 10(-3) (0-0.0097) and 2.9 x 10(-3) (0-0.0086) in Greece and Spain (pooled 1.5 x 10(-3)). The experiment-wise detection probability of resistance was 94.0 and 97.5% for the Greek and the Spanish population, respectively. Evidence of alleles conferring partial resistance to Cry1Ab was found only for the Greek population. The frequency of alleles for partial resistance was estimated as 6.5 x 10(-3) with a 95% credibility interval between 8 x 10(-4) and 17.8 x 10(-3) and a detection probability of 94%. Our results suggest that the frequency of alleles conferring resistance to CrylAb, regarding the population of S. nonagrioides, may be rare enough so that the high-dose/refuge strategy could be applied with success for resistance management.  相似文献   

10.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

11.
A mathematical model was constructed to describe the evolution of resistance to the Bacillus thuringiensis toxin (Bt) in an insect pest (European corn borer) population on a transgenic crop (Bt corn). The model comprises a set of partial differential equations of the reaction-diffusion type; local interactions of three competing pest genotypes formed by alleles of Bt resistance and susceptibility are described as in the Kostitzin model, and the spread of insects is modeled as diffusion. The model was used to evaluate the influence of pest characteristics on the efficacy of the high-dose/refuge strategy aiming to prevent or delay the spread of Bt resistance in pest populations. It was shown, by contrast, that a model based on Fisher-Haldane-Wright equations and formally incorporating a diffusion term cannot adequately describe the evolution of Bt resistance in a spatially inhomogeneous pest population. Further development of the proposed demo-genetic model is discussed.  相似文献   

12.
Abstract Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Cry3Bb delta endotoxins expressed by Bt maize specifically target corn rootworms (genus Diabrotica) and have proven highly efficacious. However, development of resistance to Bt maize, especially among western corn rootworm (Diabrotica virgifera virgifera) populations, poses a significant threat to the future viability of this pest control biotechnology. The structured refuge insect resistance management (IRM) strategy implemented in the United States for Bt maize adopts a conservative approach to managing resistance by assuming no fitness costs of Bt resistance, even though these trade‐offs strongly influence the dynamics of Bt resistance within numerous agricultural pest species. To investigate the effects of Bt resistance on fitness components of western corn rootworm, we compared survivorship, fecundity and viability of five Bt‐resistant laboratory lines reared on MON863 (YieldGard Rootworm), a Bt maize product that expresses Cry3Bb1 delta endotoxin, and on its non‐transgenic isoline. Analysis of performance on the isoline maize demonstrated no fitness costs associated with Bt resistance. In fact, resistant lines emerged approximately 2–3 days earlier than control lines when reared on both MON863 and the isoline, indicating that selection for Bt resistance resulted in a general increase in the rate of larval development. In addition, resistant lines reared on Bt maize displayed higher fecundity than those reared on the isoline, which may have significant management implications. These data will be valuable for formulating improved IRM strategies for a principal agricultural pest of maize.  相似文献   

13.
For maize and cotton, transgenic varieties that express toxins derived from Bacillus thuriengensis (Bt) are now planted in several countries. To slow resistance evolution, the “high-dose/refuge” strategy is broadly implemented in which resistance is recessive and some fields (or areas within fields) are planted exclusively with Bt crops and other fields planted exclusively with non-transgenic refuge crops for susceptible insects. This strategy, however, could potentially be undermined by contamination. Here, we investigate general models of resistance evolution for high-dose events in which fields are contaminated due to the inadvertent mixing of seeds, volunteer plants, or pollen flow between Bt and non-Bt varieties coupled with seed-saving by farmers. Contamination of the refuge by Bt plants increases selection for resistance, thereby speeding resistance evolution. Nonetheless, in most situations this effect is small. Contamination of Bt fields by non-transgenic plants might be expected to have the opposite effect and always reduce the rate of resistance evolution. While this is often the case, it is not always so. If larvae move among plants within a field, then high movement rates may reverse the effect of contamination of Bt fields to slow resistance evolution. Furthermore, if the dispersal rates of adult females between Bt and refuge fields are low, then contamination of Bt fields may speed resistance. These results suggest that contamination has the potential to undermine the efficacy of the high-dose/refuge strategy, yet depending upon the particular pest and situation, contamination may not be a concern.  相似文献   

14.
The evolution of resistance in insect pests will imperil the efficiency of transgenic insect-resistant crops. The currently advised strategy to delay resistance evolution is to plant non-toxic crops (refuges) in close proximity to plants engineered to express the toxic protein of the bacterium Bacillus thuringiensis (Bt). We seek answers to the question of how to induce growers to plant non-toxic crops. A first strategy, applied in the United States, is to require Bt growers to plant non-Bt refuges and control their compliance with requirements. We suggest that an alternative strategy is to make Bt seed more expensive by instituting a user fee, and we compare both strategies by integrating economic processes into a spatially explicit, population genetics model. Our results indicate that although both strategies may allow the sustainable management of the common pool of Bt-susceptibility alleles in pest populations, for the European corn borer (Ostrinia nubilalis) one of the most serious pests in the US corn belt, the fee strategy is less efficient than refuge requirements.  相似文献   

15.
Insect resistance to Bt crops: evidence versus theory   总被引:7,自引:0,他引:7  
Evolution of insect resistance threatens the continued success of transgenic crops producing Bacillus thuringiensis (Bt) toxins that kill pests. The approach used most widely to delay insect resistance to Bt crops is the refuge strategy, which requires refuges of host plants without Bt toxins near Bt crops to promote survival of susceptible pests. However, large-scale tests of the refuge strategy have been problematic. Analysis of more than a decade of global monitoring data reveals that the frequency of resistance alleles has increased substantially in some field populations of Helicoverpa zea, but not in five other major pests in Australia, China, Spain and the United States. The resistance of H. zea to Bt toxin Cry1Ac in transgenic cotton has not caused widespread crop failures, in part because other tactics augment control of this pest. The field outcomes documented with monitoring data are consistent with the theory underlying the refuge strategy, suggesting that refuges have helped to delay resistance.  相似文献   

16.
The sugarcane borer, Diatraea saccharalis (F.), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-Southern region of the United States. During 2007-2009, a total of 986 feral individuals of D. saccharalis were collected from maize fields in six locations of Louisiana and Mississippi and examined for resistance to Cry1Ab maize using F 1/F 2 screens. Major resistance alleles to Cry1Ab maize in the populations sampled from non-Bt maize plants during 2007 and 2008 in Louisiana and 2009 in Mississippi were rare. From a total of 487 individuals collected from three locations in Louisiana in 2007 and 2008, only one individual was identified with major resistance alleles. In addition, no major resistance alleles were detected in 242 individuals collected from three locations in Mississippi in 2009. The frequency of major resistance alleles was estimated to be 0.002 with a 95% CI of 0.00025-0.0057 for the Louisiana populations and < 0.0061, with 95% probability, for the Mississippi populations. The resistance frequency estimated for the Louisiana populations in 2007 and 2008 was not significantly different from those reported previously for populations sampled in 2004-2006. However, among 200 individuals sampled from non-Bt maize plants in 2009 in Louisiana, six individuals were identified to possess major resistance alleles. The estimated major resistance allele frequency for the populations sampled from non-Bt maize plants in 2009 in Louisiana was 0.0176 with a 95% CI of 0.0072 to 0.0328, which was significantly greater than those estimated for the populations collected in 2004-2008. Similarly, the frequency of minor resistance alleles to Cry1Ab maize for the Louisiana populations collected in 2009 was also significantly greater than those estimated for the populations sampled before. In addition, two out of 57 feral individuals collected from Bt maize plants in Louisiana in 2009 were identified to carry major resistance alleles to Cry1Ab maize. Since 2010, transgenic maize expressing pyramided Bt genes has been planted in the US mid-Southern region and by 2011, pyramided Bt maize has replaced Cry1Ab maize as the dominant Bt maize for managing lepidopteran pests including D. saccharalis. The timely switching from single-gene Cry1Ab maize to the pyramided Bt maize should prevent further increases in Cry1Ab resistance allele frequency and thus ensure the continued success of Bt maize for managing D. saccharalis in the region.  相似文献   

17.
The success of the current resistance management plan for transgenic maize, Zea mays L. (Poaceae), targeting the rootworm complex hinges upon high rates of mating between resistant and susceptible beetles. However, differences in the fitness of adult beetles could result in assortative mating, which could, in turn, change the rate of resistance evolution. Adult head capsule widths of naturally occurring populations of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), were examined in a variety of refuge configurations. Beetles were classified into treatments based on the hybrid – non‐Bt refuge or Bt maize targeting larval rootworms (hereafter BtRW maize) – and location – proximity to other Bt‐RW or refuge plants – of the natal host plant. Treatments included the following: a refuge plant surrounded by other refuge plants, a refuge plant located near a BtRW plant, a BtRW plant surrounded by BtRW plants, and a BtRW plant located near a refuge plant. The mean head capsule width of males emerging from BtRW plants was significantly smaller than the mean head capsule width of males emerging from refuge plants. These results indicate that males emerging from BtRW maize plants may be exposed to sublethal doses of the Bt toxin as larvae. No differences were detected between females emerging from refuge plants compared with Bt‐RW plants. Overall mean head capsule width decreased as the season progressed, regardless of treatment. The diminished head capsule width of western corn rootworm males emerging from Bt‐RW maize may act to enhance resistance management, particularly in a seed mix refuge system.  相似文献   

18.
Using the F2 screen methodology, we estimated the frequency of alleles conferring resistance to the Cry1Ab toxin of Bacillus thuringiensis Berliner in a Philippine population of the stem borer Scirpophaga incertulas (Walker). Evaluation of >450 isofemale lines for survival of F2 larvae on cry1Ab plants did not detect the presence of an allele conferring a high level of resistance. The frequency of such an allele in the sampled population was conservatively estimated to be <3.6 x 10(-3) with 95% confidence and a detection probability of 94%. However, there was evidence of the presence of alleles conferring partial resistance to Cry1Ab. The frequency of alleles for partial resistance was estimated as 4.8 x 10(-3) with a 95% CI between 1.3 x 10(-3) and 1.04 x 10(-2) and a detection probability of 94%. Our results suggest that the frequency of alleles conferring resistance to Cry1Ab in the population of S. incertulas sampled is not too high to preclude successful implementation of the high dose/refuge resistance management strategy.  相似文献   

19.
The area under genetically engineered plants producing Bacillus thuringiensis (Bt) toxins is steadily increasing. This increase has magnified the risk of alleles conferring resistance to these toxins being selected in natural populations of target insect pests. The speed at which this selection is likely to occur depends on the genetic characteristics of Bt resistance. We selected a strain of the beetle Chrysomela tremulae Fabricius on a transgenic Bt poplar clone Populus tremula L. x Populus tremuloides Michx producing high levels of B. thuringiensis Cry3Aa toxin. This strain was derived from an isofemale line that generated some F2 offspring that actively fed on this Bt poplar clone. The resistance ratio of the strain was >6400. Susceptibility had decreased to such an extent that the mortality of beetles of the strain fed Bt poplar leaves was similar to that of beetles fed nontransgenic poplar leaves. Genetic crosses between susceptible, resistant, and F1 hybrids showed that resistance to the Cry3Aa toxin was almost completely recessive (D(LC) = 0.07) and conferred by a single autosomal gene. The concentration of Cry3Aa produced in the transgenic Bt poplar used in this study was 6.34 times higher than the LC99 of the F1 hybrids, accounting for the complete recessivity (D(ML) = 0) of survival on Bt poplar leaves. Overall, the genetic characteristics of the resistance of C. tremulae to the Cry3Aa toxin are consistent with the assumptions underlying the high-dose refuge strategy, which aims to decrease the selection of Bt resistance alleles in natural target pest populations.  相似文献   

20.
Field tests on managing resistance to Bt-engineered plants   总被引:9,自引:0,他引:9  
Several important crops have been engineered to express toxins of Bacillus thuringiensis (Bt) for insect control. In 1999, US farmers planted nearly 8 million hectares (nearly 20 million acres) of transgenic Bt crops approved by the EPA. Bt-transgenic plants can greatly reduce the use of broader spectrum insecticides, but insect resistance may hinder this technology. Present resistance management strategies rely on a "refuge" composed of non-Bt plants to conserve susceptible alleles. We have used Bt-transgenic broccoli plants and the diamondback moth as a model system to examine resistance management strategies. The higher number of larvae on refuge plants in our field tests indicate that a "separate refuge" will be more effective at conserving susceptible larvae than a "mixed refuge" and would thereby reduce the number of homozygous resistant (RR) offspring. Our field tests also examined the strategy of spraying the refuge to prevent economic loss to the crop while maintaining susceptible alleles in the population. Results indicate that great care must be taken to ensure that refuges, particularly those sprayed with efficacious insecticides, produce adequate numbers of susceptible alleles. Each insect/Bt crop system may have unique management requirements because of the biology of the insect, but our studies validate the need for a refuge. As we learn more about how to refine our present resistance management strategies, it is important to also develop the next generation of technology and implementation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号