首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Retrograde transport between endosomes and the trans-Golgi network (TGN) is essential for the recycling of membrane proteins which are involved in a range of biological processes. A variety of machinery components have been identified at the TGN which regulate endosome-to-TGN transport, including small G proteins, SNAREs, tethering factors and scaffold molecules. The challenge is to understand how these regulatory components orchestrate not only the specific docking and fusion of retrograde membrane carriers with the TGN, but also maintain the integrity of this highly dynamic compartment to ensure efficient delivery and export of cargo. Here we review recent advances in defining the form and function of tethers and scaffolds in the regulation of the retrograde transport pathways.  相似文献   

2.
    
GRIP domain proteins are a class of golgins that have been described in yeast and animals. They locate to the trans-Golgi network and are thought to play a role in endosome-to-Golgi trafficking. The Arabidopsis GRIP domain protein, AtGRIP, fused to the green fluorescent protein (GFP), locates to Golgi stacks but does not exactly co-locate with the Golgi marker sialyl transferase (ST)-mRFP, nor with the t-SNAREs Memb11, SYP31 and BS14a. We conclude that the location of AtGRIP is further to the trans side of the stack than STtmd-mRFP. The 185-aa C-terminus of AtGRIP containing the GRIP domain targeted GFP to the Golgi, although a proportion of the fusion protein was still found in the cytosol. Mutation of a conserved tyrosine (Y717) to alanine in the GRIP domain disrupted Golgi localization. ARL1 is a small GTPase required for Golgi targeting of GRIP domain proteins in other systems. An Arabidopsis ARL1 homologue was isolated and shown to target to Golgi stacks. The GDP-restricted mutant of ARL1, AtARL1-T31N, was observed to locate partially to the cytosol, whereas the GTP-restricted mutant AtARL1-Q71L labelled the Golgi and a population of small structures. Increasing the levels of AtARL1 in epidermal cells increased the proportion of GRIP-GFP fusion protein on Golgi stacks. We show, moreover, that AtARL1 interacted with the GRIP domain in a GTP-dependent manner in vitro in affinity chromatography and in the yeast two-hybrid system. This indicates that AtGRIP and AtARL1 interact directly. We conclude that the pathway involving ARL1 and GRIP domain golgins is conserved in plants.  相似文献   

3.
    
In epithelial cells, soluble cargo proteins destined for basolateral or apical secretion are packaged into distinct trans-Golgi network-derived transport carriers. Similar carriers, termed basolateral- and apical-like, have been observed in nonepithelial cells using ectopically expressed membrane marker proteins. Whether these cells are capable of selectively packaging secretory proteins into distinct carriers is still an open question. Here, we have addressed this issue by analyzing the packaging and transport of secretory human chromogranin B fusion proteins using a green fluorescent protein-based high-resolution, dual-color imaging technique. We were able to show that these secretory markers were selectively packaged at the Golgi into tubular/vesicular-like transport carriers containing basolateral membrane markers, resulting in extensive cotransport. In contrast, deletion mutants of the human chromogranin B fusion proteins lacking an N-terminal loop structure were efficiently transported in both basolateral- and apical-like carriers, the latter displaying a spherical morphology. Similarly, in polarized epithelial cells, the human chromogranin B fusion protein was secreted basolaterally and the loop-deleted analogue into both the basolateral and apical medium. These findings suggest that nonepithelial cells, like their epithelial counterparts, possess a sorting machinery capable of selective packaging of secretory cargo into distinct types of carriers.  相似文献   

4.
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.  相似文献   

5.
    
Transforming growth factor β receptor II (Tβ RII) is synthesized in the cytoplasm and then transported to the plasma membrane of cells to fulfil its signalling duty. Here, we applied live‐cell fluorescence imaging techniques, in particular quasi‐total internal reflection fluorescence microscopy, to imaging fluorescent protein‐tagged Tβ RII and monitoring its secretion process. We observed punctuate‐like Tβ RII‐containing post‐Golgi vesicles formed in MCF7 cells. Single‐particle tracking showed that these vesicles travelled along the microtubules at an average speed of 0.51 μm/s. When stimulated by TGF‐β ligand, these receptor‐containing vesicles intended to move towards the plasma membrane. We also identified several factors that could inhibit the formation of such post‐Golgi vesicles. Although the inhibitory mechanisms still remain unknown, the observed characteristics of Tβ RII‐containing vesicles provide new information on intracellular Tβ RII transportation. It also renders Tβ RII a good model system for studying post‐Golgi vesicle‐trafficking and protein transportation. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
    
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial‐temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light‐driven timer concept that could report relative protein ages at specific sub‐cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light‐driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible “ruler” for studying temporal hierarchy of spatially ordered processes with exquisite spatial‐temporal resolution. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

8.
To study the structural composition and dynamics of gap junctions in living cells, we tagged their subunit proteins, termed connexins, with the autofluorescent tracer green fluorescent protein (GFP) and its cyan (CFP) and yellow (YFP) color variants. Tagged connexins assembled normally and channels were functional. High-resolution fluorescence images of gap junction plaques assembled from CFP and YFP tagged connexins revealed that the mode of channel distribution is strictly dependent on the connexin isoforms. Co-distribution as well as segregation into well-separated domains was observed. Based on accompanying studies we propose that channel distribution is regulated by intrinsic, connexin isoform specific signals. High-resolution time-lapse images revealed that gap junctions, contrary to previous expectations, are dynamic assemblies of channels. Channels within clusters and clusters themselves are mobile and constantly undergo structural rearrangements. Movements are complex and allow channels to move, comparable to other plasma membrane proteins not anchored to cytoskeletal elements. Comprehensive analysis, however, demonstrated that gap junction channel movements are not driven by diffusion described to propel plasma membrane protein movement. Instead, recent studies suggest that movements of gap junction channels are indirect and predominantly propelled by plasma membrane lipid flow that results from metabolic endo- and exocytosis.  相似文献   

9.
    
Alzheimer's amyloid precursor protein (APP) sorting and processing are modulated through signal transduction mechanisms regulated by protein phosphorylation. Notably, protein kinase C (PKC) appears to be an important component in signaling pathways that control APP metabolism. PKCs exist in at least 11 conventional and unconventional isoforms, and PKCα and PKCε isoforms have been specifically implicated in controlling the generation of soluble APP and amyloid-β (Aβ) fragments of APP, although identification of the PKC substrate phospho-state-sensitive effector proteins remains challenging. In the current study, we present evidence that chronic application of phorbol esters to cultured cells in serum-free medium is associated with several phenomena, namely: (i) PKCα down-regulation; (ii) PKCε up-regulation; (iii) accumulation of APP and/or APP carboxyl-terminal fragments in the trans Golgi network; (iv) disappearance of fluorescence from cytoplasmic vesicles bearing a green fluorescent protein tagged form of APP; (v) insensitivity of soluble APP release following acute additional phorbol application; and (vi) elevated cellular APP mRNA levels and holoprotein, and secreted Aβ. These data indicate that, unlike acute phorbol ester application, which is accompanied by lowered Aβ generation, chronic phorbol ester treatment causes differential regulation of PKC isozymes and increased Aβ generation. These data have implications for the design of amyloid-lowering strategies based on modulating PKC activity.  相似文献   

10.
11.
    
Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5–10 μg ml?1), BFA caused both the Golgi apparatus and trans‐Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY‐2 cells. Here we show that these BFA‐induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells. Confocal immunofluorescent and immunogold electron microscope (EM) studies demonstrated that BFA‐induced Golgi‐ and TGN‐derived aggregates are physically distinct from each other. In addition, the internalized endosomal marker FM4‐64 co‐localized with the TGN‐derived aggregates but not with the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, which acts in a dose‐ and time‐dependent manner, SCAMP1 (secretory carrier membrane protein 1) and FM4‐64 are mostly excluded from the SYP61‐positive BFA‐induced TGN aggregates, indicating that homotypic fusion of the TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE‐derived BFA‐induced aggregates. As the TGN also serves as an EE, continuously receiving materials from the plasma membrane, our data support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in terms of its response to BFA treatment in plant cells. Thus, the Golgi and TGN are probably functionally distinct organelles in plants.  相似文献   

12.
  总被引:5,自引:1,他引:5  
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.  相似文献   

13.
    
The preprophase band predicts the future cell division site. However, the mechanism of how a transient preprophase band fulfils this function is unknown. We have investigated the possibility that Golgi secretion might be involved in marking the preprophase band site. Observations on living BY-2 cells labeled for microtubules and Golgi stacks indicated an increased Golgi stack frequency at the preprophase band site. However, inhibition of Golgi secretion by brefeldin A during preprophase band formation did not prevent accurate phragmoplast fusion, and subsequent cell plate formation, at the preprophase band site. The results show that Golgi secretion does not mark the preprophase band site and thus does not play an active role in determination of the cell division site.  相似文献   

14.
15.
Protein kinase D (PKD) has been implicated in the regulation of cell shape, adhesion, and migration. At the leading edge of migrating cells active PKD co-localizes with F-actin, Arp3 and cortactin. Platelet derived growth factor (PDGF) activates PKD and recruits the kinase to the leading edge, suggesting a role for PKD in actin remodelling. In support of this, PKD directly interacts with F-actin and phosphorylates cortactin in vitro. Interference with PKD function by overexpression of a dominant negative PKD or by PKD-specific siRNA enhanced cell migration, whereas cells overexpressing PKD wild type displayed reduced migratory potential. Taken together, these data reveal a negative regulatory function of PKD in cell migration.  相似文献   

16.
  总被引:3,自引:0,他引:3  
Golvesin is a new protein associated with membranes of the Golgi apparatus and post-Golgi vesicles in Dictyostelium cells. An internal hydrophobic sequence of 24 amino-acid residues is responsible for anchoring golvesin to the membranes of these organelles. In an attempt to visualize organelle dynamics in vivo, we have used specific antibody and other labels to localize golvesin-green fluorescent protein (GFP) constructs to different cellular compartments. With a GFP tag at its N-terminus, golvesin shows the same localization as the untagged protein. It is transferred to two post-Golgi compartments, the endosomal and contractile vacuole systems. Endosomes are decorated with GFP-golvesin within less than 10 min of their internalisation, and keep the label during the acidic phase of the pathway. Blockage of the C-terminus with GFP causes entrapment of the protein in the Golgi apparatus, indicating that a free C-terminus is required for transfer of golvesin to any of the post-Golgi compartments. The C-terminally tagged golvesin proved to be a reliable Golgi marker in Dictyostelium cells revealing protrusion of Golgi tubules at peak velocities of 3 to 4 microm x s(-1). The fusion protein is retained in Golgi vesicles during mitosis, visualizing Golgi disassembly and reorganization in line with cytokinesis.  相似文献   

17.
Expanded fluorescent protein techniques employing photo-switchable andfluorescent timer proteins have become important tools in biological research.These tools allow researchers to address a major challenge in cell anddevelopmental biology, namely obtaining kinetic information about the processesthat determine the distribution and abundance of proteins in cells and tissues.This knowledge is often essential for the comprehensive understanding of abiological process, and/or required to determine the precise point ofinterference following an experimental perturbation.  相似文献   

18.
《Luminescence》2003,18(1):1-18
An Erratum has been published for this article in Luminescence (2003) 18(4) 243 During the past 5 years, green fluorescent protein (GFP) has become one of the most widely used in vivo protein markers for studying a number of different molecular processes during development, such as promoter activation, gene expression, protein trafficking and cell lineage determination. GFP fluorescence allows observation of dynamic developmental processes in real time, in both transiently and stably transformed cells, as well as in live embryos. In this review, we include the most up‐to‐date use of GFP during embryonic development and point out the unique contribution of GFP visualization, which resulted in novel discoveries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC) mu involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKC mu-green fluorescent protein fusion proteins costained with the Golgi compartment-specific markers p24 and p230. Deletions of either the NH(2)-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKC mu completely abrogated Golgi localization of PKC mu. As an NH(2)-terminal PKC mu fragment was colocalized with p24, this region of PKC mu is essential and sufficient to mediate association with Golgi membranes. Fluorescence recovery after photobleaching studies confirmed the constitutive, rapid recruitment of cytosolic PKC mu to, and stable association with, the Golgi compartment independent of activation loop phosphorylation. Kinase activity is not required for Golgi complex targeting, as evident from microscopical and cell fractionation studies with kinase-dead PKC mu found to be exclusively located at intracellular membranes. We propose a sequential activation process of PKC mu, in which Golgi compartment recruitment precedes and is essential for activation loop phosphorylation (serines 738/742) by a transacting kinase, followed by auto- and transphosphorylation of NH(2)-terminal serine(s) in the regulatory domain. PKC mu activation loop phosphorylation is indispensable for substrate phosphorylation and thus PKC mu function at the Golgi compartment.  相似文献   

20.
    
ARF‐GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase‐activating proteins (GAPs), which facilitate the activation or inactivation of ARF‐GTPases, respectively. There are 15 predicted proteins that contain an ARF‐GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF‐GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF‐GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans‐Golgi network (TGN), where it co‐localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post‐Golgi structures of unknown nature. Taking advantage of the in vivo AGD5–ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF‐GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post‐Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN‐localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane‐localised ADP ribosylation factor B (ARFB), confirming that ARF‐GAP specificity for ARF‐GTPases within the cell environment may be spatially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号