首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rufer AC  Lomize A  Benz J  Chomienne O  Thoma R  Hennig M 《FEBS letters》2007,581(17):3247-3252
The mitochondrial membrane-associated carnitine palmitoyltransferase system is a validated target for the treatment of type 2 diabetes mellitus. To further facilitate structure-based drug discovery, we determined the crystal structure of rat CPT-2 (rCPT-2) in complex with the substrate analogue palmitoyl-aminocarnitine at 1.8A resolution. Biochemical analyses revealed a strong effect of this compound on rCPT-2 activity and stability. Using a computational approach we examined the membrane association of rCPT-2. The protein interacts with the membrane as a functional monomer and the calculations confirm the presence of a membrane association domain that consists of layers of hydrophobic and positively charged residues.  相似文献   

2.
Carnitine palmitoyltransferase (CPT) 1A catalyzes the rate-limiting step in the transport of long chain acyl-CoAs from cytoplasm to the mitochondrial matrix by converting them to acylcarnitines. Located within the outer mitochondrial membrane, CPT1A activity is inhibited by malonyl-CoA, its allosteric inhibitor. In this study, we investigate for the first time the quaternary structure of rat CPT1A. Chemical cross-linking studies using intact mitochondria isolated from fed rat liver or from Saccharomyces cerevisiae expressing CPT1A show that CPT1A self-assembles into an oligomeric complex. Size exclusion chromatography experiments using solubilized mitochondrial extracts suggest that the fundamental unit of its quaternary structure is a trimer. When studied in blue native-PAGE, the CPT1A hexamer could be observed, however, suggesting that under these native conditions CPT1A trimers might be arranged as dimers. Moreover, the oligomeric state of CPT1A was found unchanged by starvation and by streptozotocin-induced diabetes, conditions characterized by changes in malonyl-CoA sensitivity of CPT1A. Finally, gel filtration analysis of several yeast-expressed chimeric CPTs demonstrates that the first 147 N-terminal residues of CPT1A, encompassing its two transmembrane segments, trigger trimerization independently of its catalytic C-terminal domain. Deletion of residues 1-82, including transmembrane 1, did not abrogate oligomerization, but the latter is limited to a trimer by the presence of the large catalytic C-terminal domain on the cytosolic face of mitochondria. Based on these findings, we proposed that the oligomeric structure of CPT1A would allow the newly formed acylcarnitines to gain direct access into the intermembrane space, hence facilitating substrate channeling.  相似文献   

3.
4.
Several mammalian carboxylesterases were shown to activate the prodrug irinotecan (CPT-11) to produce 7-ethyl-10-hydroxycamptothecin (SN-38), a topoisomerase inhibitor used in cancer therapy. However, the potential use of bacterial carboxylesterases, which have the advantage of high stability, has not been explored. We present the crystal structure of the carboxyesterase Est55 from Geobacillus stearothermophilus and evaluation of its enzyme activity on CPT-11. Crystal structures were determined at pH 6.2 and pH 6.8 and resolution of 2.0 A and 1.58 A, respectively. Est55 folds into three domains, a catalytic domain, an alpha/beta domain and a regulatory domain. The structure is in an inactive form; the side-chain of His409, one of the catalytic triad residues, is directed away from the other catalytic residues Ser194 and Glu310. Moreover, the adjacent Cys408 is triply oxidized and lies in the oxyanion hole, which would block the binding of substrate, suggesting a regulatory role. However, Cys408 is not essential for enzyme activity. Mutation of Cys408 showed that hydrophobic side-chains were favorable, while polar serine was unfavorable for enzyme activity. Est55 was shown to hydrolyze CPT-11 into the active form SN-38. The mutant C408V provided a more stable enzyme for activation of CPT-11. Therefore, engineered thermostable Est55 is a candidate for use with irinotecan in enzyme-prodrug cancer therapy.  相似文献   

5.
CPT-11 is an anticancer prodrug that is clinically used for the treatment of metastatic colorectal cancer. Hydrolysis of CPT-11 by human carboxylesterase 2 (CE2) generates SN-38, a topoisomerase I inhibitor that is the active anti-tumor agent. Expression of CE2 in cancer cells is under investigation for the tumor-localized activation of CPT-11. CE2 is normally expressed in the endoplasmic reticulum of cells but can be engineered to direct expression of active enzyme on the plasma membrane or as a secreted form. Although previous studies have investigated different locations of CE2 expression in cancer cells, it remains unclear if CE2 cellular location affects CPT-11 anticancer activity. In the present study, we directly compared the influence of CE2 cellular location on substrate hydrolysis and CPT-11 cytotoxicity. We linked expression of CE2 and enhanced green fluorescence protein (eGFP) via a foot-and-mouth disease virus 2A (F2A) peptide to facilitate fluorescence-activated cell sorting to achieve similar expression levels of ER-located, secreted or membrane-anchored CE2. Soluble CE2 was detected in the medium of cells that expressed secreted and membrane-anchored CE2, but not in cells that expressed ER-retained CE2. Cancer cells that expressed all three forms of CE2 were more sensitive to CPT-11 as compared to unmodified cancer cells, but the membrane-anchored and ER-retained forms of CE2 were consistently more effective than secreted CE2. We conclude that expression of CE2 in the ER or on the membrane of cancer cells is suitable for enhancing CPT-11 anticancer activity.  相似文献   

6.
A biotinylated derivative of the anti-tumor agent camptothecin (CPT) was synthesized and used in a phage display assay to identify drug-binding sequences. After three rounds of selection using C20-biotinylated CPT (CPT-20-B) as bait, a CPT-20-B-binding sequence, NSSQSARR, was identified.  相似文献   

7.
Irinotecan (CPT-11) is an anticancer agent widely employed in the treatment of colorectal carcinoma. A simple, rapid and sensitive high-performance liquid chromatographic method for the simultaneous determination of CPT-11 and its metabolite SN-38 in plasma, and their preliminary clinical pharmacokinetics are described. Both deproteinisation of plasma specimens (100 μl) and addition of the internal standard, camptothecin (CPT), are achieved by incorporating to samples 100 μl of a solution of CPT (1 μg/ml) in acetonitrile–1 mM orthophosphoric acid (90:10); 200 μl of this acidified acetonitrile solution, drug-free, is also added to accomplish complete deproteinisation: this procedure reduces sample preparation time to a minimum. After deproteinisation, samples are treated with potassium dihydrogenphosphate (0.1 M) and injected into a Nucleosil C18 (5 μm, 250×4.0 mm) column. Mobile phase consists of potassium dihydrogenphosphate (0.1 M)–acetonitrile (67:33), at a flow-rate of 1 ml/min. CPT-11, SN-38 and CPT are detected by fluorescence with excitation wavelength set at 228 nm and emission wavelengths of CPT-11, SN-38 and CPT fixed, respectively, at 450, 543 and 433 nm. The limits of quantitation for CPT-11 and SN-38 are 1.0 and 0.5 ng/ml, respectively. This method shows good precision: the within day relative standard deviation (RSD) for CPT-11 (1–10 000 ng/ml) is 5.17% (range 2.15–8.27%) and for SN-38 (0.5–400 ng/ml) is 4.33% (1.32–7.78%); the between-day RSDs for CPT-11 and SN-38, in the previously described ranges, are 6.82% (5.03–10.8%) and 4.94% (2.09–9.30%), respectively. Using this assay, plasma pharmacokinetics of CPT-11, SN-38 and its glucuronidated form, SN-38G, have been determined in one patient receiving 200 mg/m2 of CPT-11 as a 90 min intravenous infusion. The peak plasma concentration of CPT-11 at the end of the infusion is 3800 ng/ml. Plasma decay is biphasic with a terminal half-life of 11.6 h. The volume of distribution at steady state (Vss) is 203 l/m2, and the total body clearance (Cl) is 14.8 l/h·m2. The maximum concentrations of SN-38 and SN-38G reach 28.9 and 151 ng/ml, respectively.  相似文献   

8.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the exocytotic release of insulin. However, recent reports show that >90% of glibenclamide-binding sites are localized intracellularly and that the drug can stimulate insulin release independently of changes in KATP channels and cytoplasmic free Ca2+. Also, glibenclamide specifically and progressively accumulates in islets in association with secretory granules and mitochondria and causes long-lasting insulin secretion. It has been proposed that nutrient insulin secretagogues stimulate insulin release by increasing formation of malonyl-CoA, which, by blocking carnitine palmitoyltransferase 1 (CPT-1), switches fatty acid (FA) catabolism to synthesis of PKC-activating lipids. We show that glibenclamide dose-dependently inhibits beta-cell CPT-1 activity, consequently suppressing FA oxidation to the same extent as glucose in cultured fetal rat islets. This is associated with enhanced diacylglycerol (DAG) formation, PKC activation, and KATP-independent glibenclamide-stimulated insulin exocytosis. The fat oxidation inhibitor etomoxir stimulated KATP-independent insulin secretion to the same extent as glibenclamide, and the action of both drugs was not additive. We propose a mechanism in which inhibition of CPT-1 activity by glibenclamide switches beta-cell FA metabolism to DAG synthesis and subsequent PKC-dependent and KATP-independent insulin exocytosis. We suggest that chronic CPT inhibition, through the progressive islet accumulation of glibenclamide, may explain the prolonged stimulation of insulin secretion in some diabetic patients even after drug removal that contributes to the sustained hypoglycemia of the sulfonylurea.  相似文献   

9.
Carnitine palmitoyltransferase 1A (CPT1A) is the key regulatory enzyme of hepatic long-chain fatty acid beta-oxidation. Human CPT1A deficiency is characterized by recurrent attacks of hypoketotic hypoglycemia. We presently analyzed at both the functional and structural levels five missense mutations identified in three CPT1A-deficient patients, namely A275T, A414V, Y498C, G709E, and G710E. Heterologous expression in Saccharomyces cerevisiae permitted to validate them as disease-causing mutations. To gain further insights into their deleterious effects, we localized these mutated residues into a three-dimensional structure model of the human CPT1A created from the crystal structure of the mouse carnitine acetyltransferase. This study demonstrated for the first time that disease-causing CPT1A mutations can be divided into two categories depending on whether they affect directly (functional determinant) or indirectly the active site of the enzyme (structural determinant). Mutations A275T, A414V, and Y498C, which exhibit decreased catalytic efficiency, clearly belong to the second class. They are located more than 20 A away from the active site and mostly affect the stability of the protein itself and/or of the enzyme-substrate complex. By contrast, mutations G709E and G710E, which abolish CPT1A activity, belong to the first category. They affect Gly residues that are essential not only for the structure of the hydrophobic core in the catalytic site, but also for the chain-length specificity of CPT isoforms. This study provides novel insights into the functionality of CPT1A that may contribute to the design of drugs for the treatment of lipid disorders.  相似文献   

10.
Attachment of traditional anticancer drugs to cell penetrating peptides is an effective strategy to improve their application in cancer treatment. In this study, we designed and synthesized the conjugates TAT-CPT and TAT-2CPT by attaching camptothecin (CPT) to the N-terminus of the cell penetrating peptide TAT. Interestingly, we found that TAT-CPT and especially TAT-2CPT could kill cancer cells via membrane disruption, which is similar to antimicrobial peptides. This might be because that CPT could perform as a hydrophobic residue to increase the extent of membrane insertion of TAT and the stability of the pores. In addition, TAT-CPT and TAT-2CPT could also kill cancer cells by the released CPT after they entered cells. Taken together, attachment of CPT could turn cell penetrating peptide TAT into an antimicrobial peptide with a dual mechanism of anticancer action, which presents a new strategy to develop anticancer peptides based on cell penetrating peptides.  相似文献   

11.
Monoamine oxidase B (MAO B) is a mitochondrial outermembrane flavoenzyme that is a well-known target for antidepressant and neuroprotective drugs. We determined the structure of the human enzyme to 3 A resolution. The enzyme binds to the membrane through a C-terminal transmembrane helix and apolar loops located at various positions in the sequence. The electron density shows that pargyline, an analog of the clinically used MAO B inhibitor, deprenyl, binds covalently to the flavin N5 atom. The active site of MAO B consists of a 420 A(3)-hydrophobic substrate cavity interconnected to an entrance cavity of 290 A(3). The recognition site for the substrate amino group is an aromatic cage formed by Tyr 398 and Tyr 435. The structure provides a framework for probing the catalytic mechanism, understanding the differences between the B- and A-monoamine oxidase isoforms and designing specific inhibitors.  相似文献   

12.
Carnitine-dependent transport of fatty acids into mitochondria is believed to require participation of two carnitine palmitoyltransferase (CPT) activities, one outer, overt (CPTo) and the other inner, latent (CPTi). For exposing the CPTi and monitoring of the total CPT activity, freeze-thawing and sonication have been frequently employed as membrane-disruptive procedures, particularly when examining for CPT-deficiency diseases. Our evaluations have shown, however, that freeze-thawing and sonication yield misleading data for both the CPT activities owing to their previously unrecognized masking and unmasking effects on CPT activities. Formation of vesicular/sheath structures with mixed membrane orientation that prevents the access of medium substrate to enzymes on both aspects of the membrane at the same time appears responsible for these results. That such procedures can yield inexact data when monitoring the latency and sidedness of other membrane-bound biocatalysts as well needs to be recognized. We show that in muscle mitochondria also, a malonyl-CoA-inhibitable CPTo activity resides in the outer membrane, while a malonyl-CoA-insensitive, CPTi, activity is present in the inner membrane. Our results rationalize why Zierz and Engel ((1987) Neurology 37, 1785) were unable to obtain evidences for a latent CPT activity in mitochondria particularly of muscles. Although simple methods to allow an unambiguous quantitation of the two CPT activities in tissue extracts remain unavailable, evaluation of the possibility that two different CPT deficiencies occur appears justified.  相似文献   

13.
We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.  相似文献   

14.
Most molecular imaging technologies require exogenous probes and may have some influence on the intracellular dynamics of target molecules. In contrast, Raman scattering light measurement can identify biomolecules in their innate state without application of staining methods. Our aim was to analyze intracellular dynamics of topoisomerase I inhibitor, CPT-11, by using slit-scanning confocal Raman microscopy, which can take Raman images with high temporal and spatial resolution. We could acquire images of the intracellular distribution of CPT-11 and its metabolite SN-38 within several minutes without use of any exogenous tags. Change of subcellular drug localization after treatment could be assessed by Raman imaging. We also showed intracellular conversion from CPT-11 to SN-38 using Raman spectra. The study shows the feasibility of using slit-scanning confocal Raman microscopy for the non-labeling evaluation of the intracellular dynamics of CPT-11 with high temporal and spatial resolution. We conclude that Raman spectromicroscopic imaging is useful for pharmacokinetic studies of anticancer drugs in living cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Irinotecan (CPT-11) and its main metabolite SN-38 are potent anticancer derivatives of camptothecin (CPT), with active lactone and inactive carboxylate forms coexisting. A simple and sensitive HPLC method using the ion-pairing reagent tetrabutylammonium hydrogen sulfate (TBAHS) was developed to simultaneously determine all four analytes in rat plasma samples. Camptothecin (CPT) was used as internal standard. The mobile phase was 0.1M potassium dihydrogen phosphate containing 0.01 M TBAHS (pH 6.4)-acetonitrile (75:25, v/v). Separation of the compounds was carried out on a Hypersil C18 column, monitored at 540 nm (excitation wavelength at 380 nm). All four compounds gave linear response as a function of concentration over 0.01-10 microM. The limit of quantitation in rat plasma was 0.01, 0.008, 0.005 and 0.005 microM for CPT-11 lactone, CPT-11 carboxylate, SN-38 lactone and SN-38 carboxylate, respectively. The method was successfully used in the study on the effect of coadministered thalidomide on the plasma pharmacokinetics of CPT-11 and SN-38 in rats. Coadministered thalidomide (100mg/kg body weight by intraperitoneal injection) significantly increased the AUC(0-10h) values of CPT-11 lactone and CPT-11 carboxylate by 32.6% and 30.3 %, respectively, (P < 0.01), but decreased the values by 19.2% and 32.4% for SN-38 lactone and carboxylate, respectively, (P < 0.05). Accordingly, the value of total body clearance (CL) of CPT-11 lactone was significantly lower in combination group compared to the control (1.329 versus 1.837 L/h/kg, P = 0.0002). Plasma t(1/2beta) values for SN-38 lactone and carboxylate were significantly (P < 0.01) smaller in rats with coadministered thalidomide, as compared to rats receiving CPT-11 alone. Further studies are needed to explore the underlying mechanisms for the observed kinetic interaction between CPT-11 and thalidomide.  相似文献   

16.
Aldose reductase is an NADPH-dependent oxidoreductase that catalyzes the reduction of a broad range of aldehydes, including glucose. Since aldose reductase has been strongly implicated in the development of the chronic complications of diabetes mellitus, much effort has been devoted to understanding the structure and mechanism of this enzyme, and many aldose reductase inhibitors have been developed as potential drugs for the treatment of these complications. We describe here the 2.75 A crystal structure of recombinant human aldose reductase (Cys-298 to Ser mutant) complexed with NADPH. This mutant displays unusual kinetic behavior characterized by high Km/high Vmax substrate kinetics and reduced sensitivity to certain aldose reductase inhibitors. The crystal structure revealed that the enzyme is a beta/alpha-barrel with the coenzyme-binding domain located at the carboxyl-terminal end of the parallel strands of the barrel. The enzyme undergoes a large conformational change upon binding NADPH which involves the reorientation of loop 7 to a position which appears to lock the coenzyme into place. NADPH is bound to aldose reductase in an unusual manner, more similar to FAD- rather than NAD(P)-dependent oxidoreductases. No disulfide bridges were observed in the crystal structure.  相似文献   

17.
Camptothecin (CPT) is an anti-tumor natural product that forms a ternary complex with topoisomerase I (top I) and DNA (CPT-top I-DNA). In this study, we identified the direct interaction between CPT and human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) using the T7 phage display technology. On an avidin-agarose bead pull down assay, hnRNP A1 protein was selectively pulled down in the presence of C20-biotinylated CPT derivative (CPT-20-B) both in vitro and in vivo. The interaction was also confirmed by an analysis on a quartz-crystal microbalance (QCM) device, yielding a KD value of 82.7 nM. A surface plasmon resonance (SPR) analysis revealed that CPT inhibits the binding of hnRNP A1 to top I (KD: 260 nM) in a non-competitive manner. Moreover, an in vivo drug evaluation assay using Drosophila melanogaster showed that the knockout of the hnRNP A1 homolog Hrb87F gene showed high susceptibility against 5–50 μM of CPT as compared to a wild-type strain. Such susceptibility was specific for CPT and not observed after treatment with other cytotoxic drugs. Collectively, our data suggests that CPT directly binds to hnRNP A1 and non-competitively inhibits the hnRNP A1/top I interaction in vivo. The knockout strain loses the hnRNP A1 homolog as a both CPT-binding partner and naïve brakes of top I, which enhances the formation of the CPT-top I-DNA ternary complexes and subsequently sensitizes the growth inhibitory effect of CPT in D. melanogaster.  相似文献   

18.
SN-38 (7-ethyl-10-hydroxycamptothecin) is an active metabolite derived from the semi-synthetic compound camptothecin (CPT) named Irinotecan (CPT-11). The antitumor activity of SN-38 is 1000-fold more potent than the parent CPT-11. Fourteen new derivatives of camptothecin have recently been developed by Yakult Honsha (Tokyo, Japan). Here we describe a simple and cost-effective high-performance liquid chromatography (HPLC) method without an ion-pairing agent, which allows the simultaneous determination of both lactone and carboxylate forms of SN-38 and other camptothecin derivatives. A weak linear relationship between the HPLC retention factors (ln k') and the cellular concentrations of these compounds was observed. These results suggest that low-polarity compounds easily accumulate in cancer cells and may circumvent drug resistance. The HPLC analysis herein described is expected to greatly assist in derivative synthesis and chemical modification of camptothecin-based antitumor drugs.  相似文献   

19.
Human topoisomerase I (top1) is an important target for anti-cancer drugs, which include camptothecin (CPT) and its derivatives. To elucidate top1 inhibition in vitro, we made a series of duplex DNA substrates containing a deoxyadenosine stereospecifically modified by a covalent adduct of benzo[a]pyrene (BaP) diol epoxide [Pommier, Y., et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 10739-10744]. The known orientation of the hydrocarbon adduct in the DNA duplex relative to the top1 cleavage site, in combination with a top1/DNA crystal structure [Redinbo, M. R., et al. (1998) Science 279, 1504-1513], was used to construct a structure-based model to explain the in vitro top1 inhibition results obtained with adducted DNA duplexes. Here we experimentally determined that the lactone form of CPT was stabilized by an irreversible top1/DNA covalent complex. We removed the BaP moiety from the DNA in the published model, and docked the lactone forms of CPT and derivatives into the top1/DNA active site cavity. The docked ligands were minimized, and interaction energy scores between the ligands and the top1/DNA complex were determined. CPT docks perpendicular to the DNA backbone, projects outward from the major groove, and makes a network of potential H-bonds with the active site DNA and top1 residues, including Arg364, Lys532, and Asn722. The results are consistent with the known structure-activity relationships of CPT and derivatives. In addition, the model proposed a novel top1/N352A "resistance" mutation for 10-OH derivatives of CPT. The in vitro biochemical characterization of the top1/N352A mutant supported the model.  相似文献   

20.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号