首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The 3'-termini of the three genomic RNAs of alfalfa mosaic virus contain a common sequence of 145 nucleotides (nt) with a specific binding site for coat protein (CP). This sequence consists of several stem/loop structures interspersed with single-stranded AUGC-motifs; in RNA 3 this folding pattern is extended to a region upstream of the homologous sequence. By band-shift assays a minimum of two specific binding sites for CP were identified near the 3'-end of RNA 3. Site 1 consists of the region between nt 11 and 127 from the 3'-end and contains two AUGC-motifs. Site 2 is located between nt 133 and 208 from the 3'-end in a sequence that is largely unique to RNA 3 and contains also two AUGC-motifs. Deletion studies revealed that the two sites could bind CP independently of each other and permitted the identification of sequence elements that are essential for the activity of each site. By site-directed mutagenesis it was shown that the AUGC-motifs are important for binding of CP to both sites. These binding sites may play a role in the phenomenon that each genomic RNA has to be complexed with a few CP molecules to initiate infection. Later in the replication cycle they may act as origins for the assembly of virus particles.  相似文献   

2.
The 3' untranslated regions (UTRs) of alfalfa mosaic virus (AMV) RNAs 1, 2, and 3 consist of a common 3'-terminal sequence of 145 nucleotides (nt) and upstream sequences of 18 to 34 nt that are unique for each RNA. The common sequence can be folded into five stem-loop structures, A to E, despite the occurrence of 22 nt differences between the three RNAs in this region. Exchange of the common sequences or full-length UTRs between the three genomic RNAs did not affect the replication of these RNAs in vivo, indicating that the UTRs are functionally equivalent. Mutations that disturbed base pairing in the stem of hairpin E reduced or abolished RNA replication, whereas compensating mutations restored RNA replication. In vitro, the 3' UTRs of the three RNAs were recognized with similar efficiencies by the AMV RNA-dependent RNA polymerase (RdRp). A deletion analysis of template RNAs indicated that a 3'-terminal sequence of 127 nt in each of the three AMV RNAs was not sufficient for recognition by the RdRp. Previously, it has been shown that this 127-nt sequence is sufficient for coat protein binding. Apparently, sequences required for recognition of AMV RNAs by the RdRp are longer than sequences required for CP binding.  相似文献   

3.
U2 RNA shares a structural domain with U1, U4, and U5 RNAs.   总被引:49,自引:9,他引:40       下载免费PDF全文
C Branlant  A Krol  J P Ebel  E Lazar  B Haendler    M Jacob 《The EMBO journal》1982,1(10):1259-1265
We previously reported common structural features within the 3'-terminal regions of U1, U4, and U5 RNAs. To check whether these features also exist in U2 RNA, the primary and secondary structures of the 3'-terminal regions of chicken, pheasant, and rat U2 RNAs were examined. Whereas no difference was observed between pheasant and chicken, the chicken and rat sequences were only 82.5% homologous. Such divergence allowed us to propose a unique model of secondary structure based on maximum base-pairing and secondary structure conservation. The same model was obtained from the results of limited digestion of U2 RNA with various nucleases. Comparison of this structure with those of U1, U4, and U5 RNAs shows that the four RNAs share a common structure designated as domain A, and consisting of a free single-stranded region with the sequence Pu-A-(U)n-G-Pup flanked by two hairpins. The hairpin on the 3' side is very stable and has the sequence Py-N-Py-Gp in the loop. The presence of this common domain is discussed in connection with relationships among U RNAs and common protein binding sites.  相似文献   

4.
Chen MH  Frey TK 《Journal of virology》1999,73(4):3386-3403
Thermodynamically predicted secondary structure analysis of the 3'-terminal 305 nucleotides (nt) of the rubella virus (RUB) genome, a region conserved in all RUB defective interfering RNAs, revealed four stem-loop (SL) structures; SL1 and SL2 are both located in the E1 coding region, while SL3 and SL4 are within the 59-nt 3' untranslated region (UTR) preceding the poly(A) tract. SL2 is a structure shown to interact with human calreticulin (CAL), an autoantigen potentially involved in RUB RNA replication and pathogenesis. RNase mapping indicated that SL2 and SL3 are in equilibrium between two conformations, in the second of which the previously proposed CAL binding site in SL2, a U-U bulge, is not formed. Site-directed mutagenesis of the 3' UTR with a RUB infectious clone, Robo302, revealed that most of the 3' UTR is required for viral viability except for the 3'-terminal 5 nt and the poly(A) tract, although poly(A) was rapidly regenerated during subsequent replication. Maintenance of the overall SL3 structure, the 11-nt single-stranded sequence between SL3 and SL4, and the sequences forming SL4 were all important for viral viability. Studies on the interaction between host factors and the 3' UTR showed the formation of three RNA-protein complexes by gel mobility shift assay, and UV-induced cross-linking detected six host protein species, with molecular masses of 120, 80, 66, 55, 48, and 36 kDa, interacting with the 3' UTR. Site-directed mutagenesis of SL2 by nucleotide substitutions showed that maintenance of SL2 stem rather than the U-U bulge was critical in CAL binding since mutants having the U-U bulge base paired had a similar binding activity for CAL as the native structure whereas mutants having the SL2 stem destabilized had much lower binding activity. However, all of these mutations gave rise to viable viruses when introduced into Robo302, indicating that binding of CAL to SL2 is independent of viral viability.  相似文献   

5.
6.
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.  相似文献   

7.
Wang J  Simon AE 《Journal of virology》2000,74(14):6528-6537
Many plant RNA viruses are associated with one or more subviral RNAs. Two subviral RNAs, satellite RNA C (satC) and defective interfering RNA G (diG) intensify the symptoms of their helper, turnip crinkle virus (TCV). However, when the coat protein (CP) of TCV was replaced with that of the related Cardamine chlorotic fleck virus (CCFV), both subviral RNAs attenuated symptoms of the hybrid virus TCV-CP(CCFV). In contrast, when the translation initiation codon of the TCV CP was altered to ACG and reduced levels of CP were synthesized, satC attenuated symptoms while diG neither intensified nor attenuated symptoms. The determinants for this differential symptom modulation were previously localized to the 3'-terminal 100 bases of the subviral RNAs, which contain six positional differences (Q. Kong, J.-W. Oh, C. D. Carpenter, and A. E. Simon, Virology 238:478-485, 1997). In the current study, we have determined that certain sequences within the 3'-terminal stem-loop structures of satC and diG, which also serve as promoters for complementary strand synthesis, are critical for symptom modulation. Furthermore, the ability to attenuate symptoms was correlated with weakened binding of TCV CP to the hairpin structure.  相似文献   

8.
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.  相似文献   

9.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

10.
11.
12.
RNA 3 of alfalfa mosaic virus (AIMV) encodes the movement protein P3 and the viral coat protein which is translated from the subgenomic RNA 4. The 5'-leader sequences of RNA 3 of AIMV strains S, A, and Y differ in length from 314 to 392 nucleotides and contain a variable number of internal control regions of type 2 (ICR2 motifs) each located in a 27 nt repeat. Infectious cDNA clones were used to exchange the leader sequences of the three strains. This revealed that the leader sequence controls the specific ratio in which RNAs 3 and 4 are synthesized for each strain. In addition, it specifies strain specific differences in the kinetics of P3 accumulation in plants. Subsequent deletion analysis revealed that a 5'-sequence of 112 nt containing one ICR2 motif was sufficient for a 10 to 20% level of RNA 3 accumulation in protoplasts and a delayed accumulation in plants. An additional leader sequence of maximally 114 nt, containing two ICR2 motifs, was required to permit wildtype levels of RNA 3 accumulation. The effect of deletions in the leader sequence on P3 synthesis in vitro and in vivo was investigated.  相似文献   

13.
14.
In trypanosomes mRNAs are generated through trans splicing. The spliced leader (SL) RNA, which donates the 5'-terminal mini-exon to each of the protein coding exons, plays a central role in the trans splicing process. We have established in vivo assays to study in detail trans splicing, cap4 modification, and RNP assembly of the SL RNA in the trypanosomatid species Leptomonas seymouri. First, we found that extensive sequences within the mini-exon are required for SL RNA function in vivo, although a conserved length of 39 nt is not essential. In contrast, the intron sequence appears to be surprisingly tolerant to mutation; only the stem-loop II structure is indispensable. The asymmetry of the sequence requirements in the stem I region suggests that this domain may exist in different functional conformations. Second, distinct mini-exon sequences outside the modification site are important for efficient cap4 formation. Third, all SL RNA mutations tested allowed core RNP assembly, suggesting flexible requirements for core protein binding. In sum, the results of our mutational analysis provide evidence for a discrete domain structure of the SL RNA and help to explain the strong phylogenetic conservation of the mini-exon sequence and of the overall SL RNA secondary structure; they also suggest that there may be certain differences between trans splicing in nematodes and trypanosomes. This approach provides a basis for studying RNA-RNA interactions in the trans spliceosome.  相似文献   

15.
16.
17.
The hepatitis C virus (HCV)-encoded protease/helicase NS3 is likely to be involved in viral RNA replication. We have expressed and purified recombinant NS3 (protease and helicase domains) and Delta pNS3 (helicase domain only) and examined their abilities to interact with the 3'-terminal sequence of both positive and negative strands of HCV RNA. These regions of RNA were chosen because initiation of RNA synthesis is likely to occur at or near the 3' untranslated region (UTR). The results presented here demonstrate that NS3 (and Delta pNS3) interacts efficiently and specifically with the 3'-terminal sequences of both positive- and negative-strand RNA but not with the corresponding complementary 5'-terminal RNA sequences. The interaction of NS3 with the 3'-terminal negative strand [called 3'(-) UTR(127)] was specific in that only homologous (and not heterologous) RNA competed efficiently in the binding reaction. A predicted stem-loop structure present at the 3' terminus (nucleotides 5 to 20 from the 3' end) of the negative-strand RNA appears to be important for NS3 binding to the negative-strand UTR. Deletion of the stem-loop structure almost totally impaired NS3 (and Delta pNS3) binding. Additional mutagenesis showed that three G-C pairs within the stem were critical for helicase-RNA interaction. The data presented here also suggested that both a double-stranded structure and the 3'-proximal guanosine residues in the stem were important determinants of protein binding. In contrast to the relatively stringent requirement for 3'(-) UTR binding, specific interaction of NS3 (or Delta pNS3) with the 3'-terminal sequences of the positive-strand RNA [3'(+) UTR] appears to require the entire 3'(+) UTR of HCV. Deletion of either the 98-nucleotide 3'-terminal conserved region or the 5' half sequence containing the variable region and the poly(U) and/or poly(UC) stretch significantly impaired RNA-protein interaction. The implication of NS3 binding to the 3'-terminal sequences of viral positive- and negative-strand RNA in viral replication is discussed.  相似文献   

18.
Citrus tristeza virus (CTV) produces more than thirty 3'- or 5'-terminal subgenomic RNAs (sgRNAs) that accumulate to various extents during replication in protoplasts and plants. Among the most unusual species are two abundant populations of small 5'-terminal sgRNAs of approximately 800 nucleotides (nt) termed low-molecular-weight tristeza (LMT1 and LMT2) RNAs. Remarkably, CTV replicons with all 10 3' genes deleted produce only the larger LMT1 RNAs. These 5'-terminal positive-sense sgRNAs do not have corresponding negative strands and were hypothesized to be produced by premature termination during plus-strand genomic RNA synthesis. We characterized a cis-acting element that controls the production of the LMT1 RNAs. Since manipulation of this cis-acting element in its native position (the L-ProI region of replicase) was not possible because the mutations negatively affect replication, a region (5'TR) surrounding the putative termination sites (nt approximately 550 to 1000) was duplicated in the 3' end of a CTV replicon to allow characterization. The duplicated sequence continued to produce a 5'-terminal plus-strand sgRNA, here much larger ( approximately 11 kb), apparently by termination. Surprisingly, a new 3'-terminal sgRNA was observed from the duplicated 5'TR. A large 3'-terminal sgRNA resulting from the putative promoter activity of the native 5'TR was not observed, possibly because of the down-regulation of a promoter approximately 19 kb from the 3' terminus. However, we were able to observe a sgRNA produced from the native 5'TR of a small defective RNA, which placed the native 5'TR closer to the 3' terminus, demonstrating sgRNA promoter activity of the native 5'TR. Deletion mutagenesis mapped the promoter and the terminator activities of the 5'TR (in the 3' position in the CTV replicon) to a 57-nt region, which was folded by the MFOLD computer program into two stem-loops. Mutations in the putative stem-loop structures equally reduced or prevented production of both the 3'- and 5'-terminal sgRNAs. These mutations, when introduced in frame in the native 5'TR, similarly abolished the synthesis of the LMT1 RNAs and presumably the large 3'-terminal sgRNA while having no impact on replication, demonstrating that neither 5'- nor 3'-terminal sgRNA is necessary for replication of the replicon or full-length CTV in protoplasts. Differences between the 5'TR, which produced two plus-strand sgRNAs, and the cis-acting elements controlling the 3' open reading frames, which produced additional minus-strand sgRNAs corresponding to the 3'-terminal mRNAs, suggest that the different sgRNA controller elements had different origins in the modular evolution of closteroviruses.  相似文献   

19.
The parts of the RNA genome of infectious bronchitis virus (IBV) required for replication and packaging of the RNA were investigated using deletion mutagenesis of a defective RNA (D-RNA) CD-61 (6.1 kb) containing a chloramphenicol acetyltransferase reporter gene. A D-RNA with the first 544, but not as few as 338, nucleotides (nt) of the 5' terminus was replicated; the 5' untranslated region (UTR) comprises 528 nt. Region I of the 3' UTR, adjacent to the nucleocapsid protein gene, comprised 212 nt and could be removed without impairment of replication or packaging of D-RNAs. A D-RNA with the final 338 nt, including the 293 nt in the highly conserved region II of the 3' UTR, was replicated. Thus, the 5'-terminal 544 nt and 3'-terminal 338 nt contained the necessary signals for RNA replication. Phylogenetic analysis of 19 strains of IBV and 3 strains of turkey coronavirus predicted a conserved stem-loop structure at the 5' end of region II of the 3' UTR. Removal of the predicted stem-loop structure abolished replication of the D-RNAs. D-RNAs in which replicase gene 1b-derived sequences had been removed or replaced with all the downstream genes were replicated well but were rescued poorly, suggesting inefficient packaging. However, no specific part of the 1b gene was required for efficient packaging.  相似文献   

20.
Poly(rC) binding protein 2 (PCBP2) forms a specific ribonucleoprotein (RNP) complex with the 5'-terminal sequences of poliovirus genomic RNA, as determined by electrophoretic mobility shift assay. Mutational analysis showed that binding requires the wild-type nucleotide sequence at positions 20-25. This sequence is predicted to localize to a specific stem-loop within a cloverleaf-like secondary structure element at the 5'-terminus of the viral RNA. Addition of purified poliovirus 3CD to the PCBP2/RNA binding reaction results in the formation of a ternary complex, whose electrophoretic mobility is further retarded. These properties are consistent with those described for the unidentified cellular protein in the RNP complex described by Andino et al. (Andino R, Rieckhof GE, Achacoso PL, Baltimore D, 1993, EMBO J 12:3587-3598). Dicistronic RNAs containing mutations in the 5' cloverleaf-like structure of poliovirus that abate PCBP2 binding show a decrease in RNA replication and translation of gene products directed by the poliovirus 5' noncoding region in vitro, suggesting that the interaction of PCBP2 with these sequences performs a dual role in the virus life cycle by facilitating both viral protein synthesis and initiation of viral RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号