首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro proliferation and rooting capacity of San Castrese and Portici apricots (Prunus armeniaca L.) were tested on modified MS medium enriched with varying growth regulator concentrations and sucrose (58.4 mM) or sorbitol (116.8 mM) as main carbon energy sources. The interaction of proliferation and rooting media was also studied.Proliferation of both cultivars was proportional to benzyladenine (BA) concentration and enhanced with sorbitol media. However, 8.8 M BA was often associated with hyperhydricity, particularly when shoots were grown on sucrose media. Newly proliferated shoots elongated better on sorbitol media. The positive influence of sorbitol on proliferation and shoot growth was not due to osmotic effects. Moreover, sorbitol showed a positive carryover effect in hastening rooting of Portici. By contrast, when transferred to sorbitol rooting media, the shoots of both cultivars generally showed low rooting, with short, thick roots.Up to 70% of the plantlets that produced roots in sucrose media enriched with indolebutyric acid were successfully acclimatized when they were dipped in a benomyl (0.075% w/v) suspension before being transplanted with care being taken to prevent over-wetting of soil.Abbreviations BA 6-benzyladenine - IBA indolebutyric acid - GA3 gibberellic acid - SEM standard error of mean  相似文献   

2.
Identification of actively filling sucrose sinks   总被引:22,自引:14,他引:22       下载免费PDF全文
Sung SJ  Xu DP  Black CC 《Plant physiology》1989,89(4):1117-1121
Certain actively filling plant sucrose sinks such as a seed, a tuber, or a root can be identified by measuring the uridine diphosphate and pyrophosphate-dependent metabolism of sucrose. Sucrolysis in both active and quiescent sucrose sinks was tested and sucrose synthase was found to be the predominant sucrose breakdown activity. Sucrolysis via invertases was low and secondary in both types of sinks. Sucrose synthase activity dropped markedly, greater than fivefold, in quiescent sinks. The tests are consistent with the hypothesis that the sucrose filling activity, i.e. the sink strength, of these plant sinks can be measured by testing the uridine diphosphate and pyrophosphate-dependent breakdown of sucrose. Measuring the initial reactions of sucrolysis shows much promise for use in agriculture crop and tree improvement research as a biochemical test for sink strength.  相似文献   

3.
Carbohydrate sources and sinks in woody plants   总被引:1,自引:0,他引:1  
Each perennial woody plant is a highly integrated system of competing carbohydrate sinks (utilization sites). Internal competition for carbohydrates is shown by changes in rates of carbohydrate movement from sources to sinks and reversals in direction of carbohydrate transport as the relative sink strengths of various organs change. Most carbohydrates are produced in foliage leaves but some are synthesized in cotyledons, hypocotyls, buds, twigs, stems, flowers, fruits, and strobili. Although the bulk of the carbohydrate pool moves to sinks through the phloem, some carbohydrates are obtained by sinks from the xylem sap. Sugars are actively accumulated in the phloem and move passively to sinks along a concentration gradient. The dry weight of a mature woody plant represents only a small proportion of the photosynthate it produced. This discrepancy results not only from consumption of plant tissues by herbivores and shedding of plant parts, but also from depletion of carbohydrates by respiration, leaching, exudation, secretion, translocation to other plants through root grafts and mycorrhizae and losses to parasites. Large spatial and temporal variations occur in the use of reserve- and currently produced carbohydrates in metabolism and growth of shoots, stems, roots, and reproductive structures. A portion of the carbohydrate pool is diverted for production of chemicals involved in defense against fungi, herbivores, and competing plants. Woody plants accumulate carbohydrates during periods of excess production and deplete carbohydrates when the rate of utilization exceeds the rate of production. Stored carbohydrates play an important role in metabolism, growth, defense, cold hardiness, and postponement or prevention of plant mortality.  相似文献   

4.
5.
Dissolution of sucrose crystals in the anhydrous sorbitol melt   总被引:1,自引:0,他引:1  
The dissolution of a sugar (sucrose as a model) with higher melting point was studied in a molten food polyol (sorbitol as a model) with lower melting point, both in anhydrous state. A DSC and optical examination revealed the dissolution of anhydrous sucrose crystals (mp 192 degrees C) in anhydrous sorbitol (mp 99 degrees C) liquid melt. The sucrose-sorbitol crystal mixtures at the proportions of 10, 30, 60, 100 and 150 g of sucrose per 100 g of sorbitol were heat scanned in a DSC to above melting endotherm of sorbitol but well below the onset temperature of melting of sucrose at three different temperatures 110, 130 and 150 degrees C. The heat scanning modes used were with or without isothermal holding. The dissolution of sucrose in the sorbitol liquid melt was manifested by an increase in the glass transition temperature of the melt and corresponding decrease in endothermic melting enthalpy of sucrose. At given experimental conditions, as high as 25 and 85% of sucrose dissolved in the sorbitol melt during 1 h of isothermal holding at 110 and 150 degrees C, respectively. Optical microscopic observation also clearly showed the reduction in the size of sucrose crystals in sorbitol melt during the isothermal holding at those temperatures.  相似文献   

6.
7.
Current and past land use practices are critical in determining the distribution and sizeof global terrestrial carbon (C) sources and sinks. Although fossil fuel emissions dominate the an-thropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropo-genic emissions in a number of tropical regions of Asia. The size of the emission flux owing to landuse change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC·a~(-1) for 1990-1995 but more recent es-timates suggest the magnitude of this source may be only of 0.96 PgC·a~(-1) for the 1990s. In add-ition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However,mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO_2) fertilization and climate change;fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential formanaging C sinks is limited, improved land use management and new land uses such as refores-tation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best manage-ment practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.  相似文献   

8.
Land use effects on terrestrial carbon sources and sinks   总被引:3,自引:0,他引:3  
Current and past land use practices are critical in determining the distribution and size of global terrestrial carbon (C) sources and sinks. Althoughfossil fuel emissions dominate the anthropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropogenic emissions in a number of tropical regions of Asia. The size of the emission flux owing to land use change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC@a-1 for 1990-1995 but more recent estimates suggest the magnitude of this source may be only of 0.96 PgC@a-1 for the 1990s. In addition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However, mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO2) fertilization and climate change; fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential for managing C sinks is limited, improved land use management and new land uses such as reforestation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best management practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.  相似文献   

9.
1. The release of total phosphorus (TP) and nitrogen (N in ammonium) was measured for the five most abundant fish species (>85% of biomass) in Mouse and Ranger Lakes, two biomanipulated, oligotrophic lakes in Ontario. 2. The specific release rate of both nutrients was significantly related to fish mass; log10 TP release rate (μg h?1) = 0.793 (±0.109) [log10 wet mass (g)] + 0.7817 (±0.145), and log10 N release rate (μg h?1) = 0.6946 (±0.079) [log10wet mass (g)] + 1.7481 (±0.108). 3. When fish nutrient release was standardized for abundance (all populations, 1993–95) and epilimnetic volume, fish were estimated to contribute 0.083 (±0.061) μg TP L?1 day?1, and 0.41 (±0.17) μg N L?1 day?1 in Mouse L., and 0.062 (±0.020) μg TP L?1 day?1 and 0.31 (±0.08) μg N L?1 day?1 in Ranger L. 4. In comparison, concurrent rates of total planktonic P regeneration were 1.02 (±0.45) μg L?1 day?1 (Mouse L.) and 0.85 (±0.19) μg L?1 day?1 (Ranger L.). Fish represented 8% of planktonic P release in Mouse L. and 7% in Ranger L. 5. Fish dry mass had mean elemental body compositions of 39.3% carbon, 10.9% nitrogen, and 4.0% phosphorus (all fish combined), with a mean molar C : N : P ratio of 27 : 6 : 1. This comprised about 55% and 23% of the total epilimnetic particulate P and N respectively. 6. Turnover times of P and N in fish were approximately 103 and 48 days respectively. In comparison, planktonic turnover times of particulate P in Mouse and Ranger Lakes were 4.3 and 4.4 days respectively. Given their high P content and low turnover rates, fish appear to be important P sinks in lakes.  相似文献   

10.
Landscapes are often spatially heterogeneous, and many species frequently confront novel environments to which they are not adapted. Whether a species becomes adapted to a novel environment, and thus undergoes niche evolution, may depend not only on the genetic architecture of the traits under selection, but also on the structure of the ecological landscape. Different models of gene architecture are used to show that complex genetic architectures tends to produce genetic canalization that slows adaptation to novel environments compared to simpler additive polygenic architectures, but that the topology of the landscape interacts with genetic architecture to influence the probability of adaptation. This interaction can lead to unexpected results, such as a greater probability of adaptation to a novel environment for a population of more highly canalized individuals than a population of less canalized individuals. The interplay between landscape structure and genetic architecture may influence the balance of evolutionary forces acting on a population, and thus whether a species is likely to adapt to the novel environments it confronts.  相似文献   

11.
12.
Summary Ethanol yields produced by Zymomonas strains from sucrose are significantly lower than from glucose or fructose. The low yield is a consequence of the formation of both levan and sorbitol as by-products. Most of the levan is in a non-precipitable form, indicating low molecular weight. Formation of sorbitol was observed with both the Zymomonas strains studied. The measured amounts of levan and sorbitol were 8% and 11% of the original sucrose content, respectively.  相似文献   

13.
14.
Spatially structured habitats challenge populations to have positive growth rates and species often rely on dispersing propagules to occupy habitats outside their fundamental niche. Most marine species show two main life stages, a dispersing stage and a sedentary stage affecting distribution and abundance patterns. An experimental study on Corophium acherusicum, a colonial tube-building amphipod, showed the strong influence that a source population can have on new habitats. More importantly, this study shows the effect of temporal sinks where newly established populations can show reduced growth rates if the propagule supply from a source is removed. Sink populations had a reduction in abundance and became male-biased as females left colonies. The consequences arising from short-term dispersal and temporal sinks could be due to different selection pressures at the source and sink populations. These consequences can become reflected in long-term dynamics of marine populations if we shift focus to non-random dispersal models incorporating behaviour and stage-dependent dispersal.  相似文献   

15.
The mechanisms of saccharose and sorbitol transport in Prunus persica leaves were investigated in plasma membrane vesicles purified by aqueous 2-phase partitioning and equilibrated in pH 7.5 buffer containing K+. The imposition of an artificial proton motive force energized an active uptake of both saccharose and sorbitol. The maximum uptake rate of saccharose was 2.5 times higher than that of sorbitol. Saccharose and sorbitol uptake exhibited saturation kinetics suggesting they were carrier-mediated. Apparent Km for the saccharose and the sorbitol uptake were 0.36 and 0.67 mM, respectively. Active absorption of saccharose was completely inhibited by a non-permeant thiol reagent, PCMBS, contrary to sorbitol absorption. These results suggested that saccharose and sorbitol were transported at least by two different carriers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The paired source and sink concepts are used increasingly in ecology and Earth sciences, but they have evolved in divergent directions, hampering communication across disciplines. We propose a conceptual framework that unifies existing definitions, and review their most significant consequences for the various disciplines. A general definition of the source and sink concepts that transcends disciplines is based on net flows between the components of a system: a source is a subsystem that is a net exporter of some living or non‐living entities of interest, and a sink is a net importer of these entities. Sources and sinks can further be classified as conditional and unconditional, depending on the intrinsic propensity of subsystems to either produce (source) or absorb (sink) a surplus of these entities under some (conditional) or all (unconditional) conditions. The distinction between conditional and unconditional sources and sinks, however, is strongly context dependent. Sources can turn into sinks, and vice versa, when the context is changed, when systems are subject to temporal fluctuations or evolution, or when they are considered at different spatial and temporal scales. The conservation of ecosystem services requires careful consideration of the source?sink dynamics of multiple ecosystem components. Our synthesis shows that source?sink dynamics has profound consequences for our ability to understand, predict, and manage species and ecosystems in heterogeneous landscapes.  相似文献   

17.
Alterations in the metabolism of Lupinus albus organs that result from and subsequently follow a period of severe water deficit (WD) are described. By means of 13C-nuclear magnetic resonance (NMR), changes in the major metabolites were monitored in several plant organs (leaflets and petiole, roots, stem stele and cortex). During the stress, most of the leaves were lost and the stem functioned as a storage repository of sugars (glucose and sucrose) and amino acids (asparagine and proline). Upon rewatering, lupin plants rapidly re-established the relative water content (RWC) and produced new leaves. However, at the metabolic level, the events seem to be more complex, since proline (a stress related metabolite) disappeared rapidly while sugars and asparagine reached the initial pattern more slowly, particularly in the stem.  相似文献   

18.
19.
硅对干旱胁迫下玉米水分代谢的影响   总被引:2,自引:0,他引:2  
李清芳  马成仓  季必金 《生态学报》2009,29(8):4163-4168
利用盆栽试验研究了施硅(K2SiO3)对玉米植株水分代谢的影响.结果表明:施硅降低了干旱胁迫下玉米植株的气孔导度,降低了干旱胁迫早期到中期的蒸腾速率,保持了干旱胁迫后期较高的蒸腾速率,从而导致施硅玉米植株的叶片含水量和水势高于对照.由于植株的水分状况改善,施硅玉米植株生物量高于对照.硅增强玉米植株的抗旱性,而提高植株保水能力是硅提高抗旱性的重要原因.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号