首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; Söhl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.  相似文献   

2.
Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; S?hl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.  相似文献   

3.
Regulation of connexin expression   总被引:4,自引:0,他引:4  
  相似文献   

4.
Gap junctions, composed of connexin protein subunits, allow direct communication through conduits between neighboring cells. Twenty and twenty-one members of the connexin gene family are likely to be expressed in the mouse and human genome, respectively, 19 of which can be grouped into sequence-orthologous pairs. Their gene structure appears to be relatively simple. In most cases, an untranslated exon1 is separated by an intron of different lengh from exon2 that includes the uninterrupted coding region and the 3′-untranslated region. However, there are several exceptions to this scheme, since some mouse connexin genes contain different 5′-untranslated regions spliced either in an alternative and/or consecutive manner. Additionally, in at least 3 mouse and human connexin genes (mCx36, mCx39, mCx57 and hCx31.3, hCx36, as well as hCx40.1) the reading frame is spliced together from 2 different exons. So far, there are two nomenclatures to classify the known connexin genes: The “Gja/Gjb” nomenclature, as it is currently adopted by the NCBI data base, contains some inconsistencies compared to the “Cx” nomenclature. Here we suggest some minor corrections to co-ordinate the “Gja/Gjb” nomenclature with the “Cx” nomenclature. Furthermore, this short review contains an update on phenotypic correlations between connexin deficient mice and patients bearing mutations in their orthologous connexin genes.  相似文献   

5.
An update on connexin genes and their nomenclature in mouse and man   总被引:1,自引:0,他引:1  
Gap junctions, composed of connexin protein subunits, allow direct communication through conduits between neighboring cells. Twenty and twenty-one members of the connexin gene family are likely to be expressed in the mouse and human genome, respectively, 19 of which can be grouped into sequence-orthologous pairs. Their gene structure appears to be relatively simple. In most cases, an untranslated exon1 is separated by an intron of different lengh from exon2 that includes the uninterrupted coding region and the 3'-untranslated region. However, there are several exceptions to this scheme, since some mouse connexin genes contain different 5'-untranslated regions spliced either in an alternative and/or consecutive manner. Additionally, in at least 3 mouse and human connexin genes (mCx36, mCx39, mCx57 and hCx31.3, hCx36, as well as hCx40.1) the reading frame is spliced together from 2 different exons. So far, there are two nomenclatures to classify the known connexin genes: The "Gja/Gjb" nomenclature, as it is currently adopted by the NCBI data base, contains some inconsistencies compared to the "Cx" nomenclature. Here we suggest some minor corrections to co-ordinate the "Gja/Gjb" nomenclature with the "Cx" nomenclature. Furthermore, this short review contains an update on phenotypic correlations between connexin deficient mice and patients bearing mutations in their orthologous connexin genes.  相似文献   

6.
缝隙连接是由多基因家族编码的连接蛋白构成的、细胞间的跨膜水相通道。目前已确定小鼠连接蛋白基因家族含有20个成员,人类连接蛋白基因家族含有21个成员,其中有19种在人类和小鼠中均有表达,具有很高的同源性;不同的连接蛋白可形成同型和异型两种连接子,不同类型连接子可形成4种不同类型的缝隙连接通道。越来越多的研究表明,连接蛋白基因突变与人类遗传性疾病密切相关。  相似文献   

7.
Gap junctions, composed of connexin protein subunits, allow direct communication through conduits between neighboring cells. Twenty and twenty-one members of the connexin gene family are likely to be expressed in the mouse and human genome, respectively, 19 of which can be grouped into sequence-orthologous pairs. Their gene structure appears to be relatively simple. In most cases, an untranslated exon1 is separated by an intron of different lengh from exon2 that includes the uninterrupted coding region and the 3'-untranslated region. However, there are several exceptions to this scheme, since some mouse connexin genes contain different 5'-untranslated regions spliced either in an alternative and/or consecutive manner. Additionally, in at least 3 mouse and human connexin genes (mCx36, mCx39, mCx57 and hCx31.3, hCx36, as well as hCx40.1) the reading frame is spliced together from 2 different exons. So far, there are two nomenclatures to classify the known connexin genes: The “Gja/Gjb” nomenclature, as it is currently adopted by the NCBI data base, contains some inconsistencies compared to the “Cx” nomenclature. Here we suggest some minor corrections to co-ordinate the “Gja/Gjb” nomenclature with the “Cx” nomenclature. Furthermore, this short review contains an update on phenotypic correlations between connexin deficient mice and patients bearing mutations in their orthologous connexin genes.  相似文献   

8.
The discovery of the gap junction structure, its functions and the family of the “connexin” genes, has been basically ignored by the major biological disciplines. These connexin genes code for proteins that organize to form membrane-associated hemi-channels, “connexons”, co-join with the connexons of neighboring cells to form gap junctions. Gap junctions appeared in the early evolution of the metazoan. Their fundamental functions, (e.g., to synchronize electrotonic and metabolic functions of societies of cells, and to regulate cell proliferation, cell differentiation, and apoptosis), were accomplished via integrating the extra-cellular triggering of intra-cellular signaling, and therefore, regulating gene expression. These functions have been documented by genetic mutations of the connexin genes and by chemical modulation of gap junctions. Via genetic alteration of connexins in knock-out and transgenic mice, as well as inherited connexin mutations in various human syndromes, the gap junction has been shown to be directly linked to many normal cell functions and multiple diseases, such as birth defects, reproductive, neurological disorders, immune dysfunction and cancer. Specifically, the modulation of gap junctional intercellular communication (GJIC), either by increasing or decreasing its functions by non-mutagenic chemicals or by oncogenes or tumor suppressor genes in normal or “initiated” stem cells and their progenitor cells, can have a major impact on tumor promotion or cancer chemoprevention and chemotherapy. The overview of the roles of the gap junction in the evolution of the metazoan and its potential in understanding a “systems” view of human health and aging and the diseases of aging will be attempted.  相似文献   

9.
The vertebrate gap junctions formed by the connexin family of transmembrane proteins came to the attention of geneticists in 1993 with the identification of mutations linked to a form of demyelinating neuropathy. Since then, several other genetic disorders have been linked to mutations in specific connexin genes. Also, different diseases can result from different mutations in the same connexin gene. In addition, specific connexin knockout mice have surprising phenotypes. This is leading cell biologists to look afresh at connexins and their involvement in intercellular communication through gap junctions, a process that seems central to coordinating cell function within tissues. Here, we comment on how genetic studies are giving a new impetus to the cell biology of gap junctions.  相似文献   

10.
In this study we show by Northern blot hybridization that the novel human (h) connexin (Cx) genes hCx25, hCx30.2, hCx31.9, hCx40.1, hCx59, and hCx62 are transcribed in different adult tissues. The hCx25 RNA is slightly expressed in placenta, and hCx59 and hCx62 RNA are both transcribed in skeletal muscle, although the latter is also slightly expressed in heart. Expression profiles of three orthologous human (h) and mouse (m) connexin gene pairs, i.e., hCx30.2 versus mCx29, hCx40.1 versus mCx39, and hCx62 versus mCx57, differ strongly, in contrast to other orthologous connexins with higher sequence identities. Thus, several of the new human connexin genes appear to have evolved to different expression patterns and presumably to different functions compared to their orthologues in the mouse genome. (121)  相似文献   

11.
A new mouse connexin gene has been isolated that codes for a connexin protein of 505 amino acid residues. Based on the predicted molecular mass of 57.115 kDa, it has been designated connexin-57. Similar to most other mouse connexin genes, the coding region of connexin-57 is not interrupted by introns and exists in the mouse genome as a single-copy gene. Within the connexin family, this new gene shows highest sequence identity to porcine connexin-60 in the alpha group of connexins. The connexin-57 gene was mapped to a position on mouse chromosome 4, 30 centimorgans proximal to a cluster of previously mapped connexin genes. Low levels of connexin-57 mRNA were detected in skin, heart, kidney, testis, ovary, intestine, and in the mouse embryo after 8 days post coitum, but expression was not detected in brain, sciatic nerve or liver. In order to analyze gene function, the connexin-57 coding region was expressed by transfection in human HeLa cells, where it restored homotypic intercellular transfer of microinjected neurobiotin. Heterotypic transfer was observed between HeLa connexin-57 transfectants and HeLa cells, expressing murine connexin-43, -37, or -30.3. Double whole-cell voltage clamp analyses revealed that HeLa-connexin-57 transfectants expressed about 10 times more channels than parental HeLa cells. Voltage gating by transjunctional and transmembrane voltages as well as unitary conductance ( approximately 27 picosiemens) were different from intrinsic connexin channels in parental HeLa cells.  相似文献   

12.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

13.
Gap junctions, composed of connexin proteins in chordates, are the most ubiquitous form of intercellular communication. Complete connexin gene families have been identified from human (20) and mouse (19), revealing significant diversity in gap junction channels. We searched current databases and identified 37 putative zebrafish connexin genes, almost twice the number found in mammals. Phylogenetic comparison of entire connexin gene families from human, mouse, and zebrafish revealed 23 zebrafish relatives of 16 mammalian connexins, and 14 connexins apparently unique to zebrafish. We found evidence for duplication events in all genomes, as well as evidence for recent tandem duplication events in the zebrafish, indicating that the complexity of the connexin family is growing. The identification of a third complete connexin gene family provides novel insight into the evolution of connexins, and sheds light into the phenotypic evolution of intercellular communication via gap junctions.  相似文献   

14.
Connexin genes code for proteins that form cell-to-cell channels known as gap junctions. The genes for the known connexins 26, 32, 43, and 46 have been assigned to human chromosomes, 13, X, 6, and 13, respectively, by analysis of a panel of human-mouse somatic cell hybrids using rat cDNA probes. A pseudogene of connexin 43 that lacks an intron of the cx43 gene has been located on human chromosome 5. Furthermore, the genes of the two new connexins 37 and 40 have both been assigned to human chromosome 1. Thus the human chromosomes 1 and 13 each carry at least two different connexin genes. Their exact location on these chromosomes is not yet known. From our results subchromosomal assignments can be deduced for the human cx32 gene to Xq13-p11, the human cx37 gene as well as the human cx40 gene to 1pter-q12, and the human cx43 gene to 6q14-qter. The generation of the connexin multigene family from a hypothetical ancestral connexin gene is discussed.  相似文献   

15.
16.
17.
Cells within the vast majority of human tissues communicate directly through clustered arrays of intercellular channels called gap junctions. Gene ablation studies in mouse models have revealed that these intercellular channels are necessary for a variety of organ functions and that some of these genes are essential for survival. Molecular genetics has uncovered that germ line mutations in nearly half of the genes that encode the 21-member connexin family of gap junction proteins are linked to one or more human diseases. Frequently, these mutations are autosomal recessive, whereas in other cases, autosomal dominant mutations manifest as disease. Given the broad and overlapping distribution of connexins in a wide arrangement of tissues, it is hard to predict where connexin-linked diseases will clinically manifest. For instance, the most prevalent connexin in the human body is connexin-43 (Cx43), yet autosomal dominant mutations in the GJA1 gene, which encodes Cx43, exhibit modest developmental disorders resulting in a disease termed oculodentodigital dysplasia. Autosomal recessive mutations in the gene encoding Cx26 result in moderate to severe sensorineural hearing loss, whereas autosomal dominant mutations produce hearing loss and a wide range of skin diseases, including palmoplantar keratoderma. Here, we will focus on autosomal dominant mutations of the genes encoding Cx26 and Cx43 in relation to models that link genotypes to phenotypic outcomes with particular reference to how these approaches provide insight into human disease.  相似文献   

18.
Gap junctions play a critical role in hearing and mutations in connexin genes cause a high incidence of human deafness. Pathogenesis mainly occurs in the cochlea, where gap junctions form extensive networks between non-sensory cells that can be divided into two independent gap junction systems, the epithelial cell gap junction system and the connective tissue cell gap junction system. At least four different connexins have been reported to be present in the mammalian inner ear, and gap junctions are thought to provide a route for recycling potassium ions that pass through the sensory cells during the mechanosensory transduction process back to the endolymph. Here we review the cochlear gap junction networks and their hypothesized role in potassium ion recycling mechanism, pharmacological and physiological gating of cochlear connexins, animal models harboring connexin mutations and functional studies of mutant channels that cause human deafness. These studies elucidate gap junction functions in the cochlea and also provide insight for understanding the pathogenesis of this common hereditary deafness induced by connexin mutations. H.-B. Zhao, T. Kikuchi, A. Ngezahayo, T. W. White contributed equally to this article  相似文献   

19.
Gap junctions are important structures in cell-to-cell communication. Connexins, the protein units of gap junctions, are involved in several human disorders. Mutations in beta-connexin genes cause hearing, dermatological and peripheral nerve disorders. Recessive mutations in the gene encoding connexin 26 (GJB2) are the most common cause of childhood-onset deafness. The combination of mutations in the GJB2 and GJB6 (Cx30) genes also cause childhood hearing impairment. Although both recessive and dominant connexin mutants are functionally impaired, dominant mutations might have in addition a dominant-negative effect on wild-type connexins. Some dominant mutations in beta-connexin genes have a pleiotropic effect at the level of the skin, the auditory system and the peripheral nerves. Understanding the genotype-phenotype correlations in diseases caused by mutations in connexin genes might provide important insight into the mechanisms that lead to these disorders.  相似文献   

20.
Intercellular communication and carcinogenesis   总被引:32,自引:0,他引:32  
Two types of intercellular communication (humoral and cell contact-mediated) are involved in control of cellular function in multicellular organisms, both of them mediated by membrane-embedded proteins. Involvement of aberrant humoral communication in carcinogenesis has been well documented and genes coding for some growth factors and their receptors have been classified as oncogenes. More recently, cell contact-mediated communication has been found to have an important role in carcinogenesis, and some genes coding for proteins involved in this type of communication appear to form a family of tumor-suppressor genes. Both homologous (among normal or (pre-)cancerous cells) as well as heterologous (between normal and (pre)cancerous cells) communications appear to play important roles in cell growth control. Gap junctional intercellular communication (GJIC) is the only means by which multicellular organisms can exchange low molecular weight signals directly from within one cell to the interior of neighboring cells. GJIC is altered by many tumor-promoting agents and in many human and rodent tumors. We have recently shown that liver tumor-promoting agents inhibit GJIC in the rat liver in vivo. Molecular mechanisms which could lead to aberrant GJIC include: (1) mutation of connexin genes; (2) reduced and/or aberrant expression of connexin mRNA; (3) aberrant localization of connexin proteins, i.e., intracytoplasmic rather than in the cytoplasmic membrane; and (4) modulation of connexin functions by other proteins, such as those involved in extracellular matrix and cell adhesion. Whilst mutations of the cx 32 gene appear to be rare in tumors, cx 37 gene mutations have been reported in a mouse lung tumor cell line. Our results suggest that aberrant connexin localization is rather common in cancer cells and that possible molecular mechanisms include aberrant phosphorylation of connexin proteins and lack of cell adhesion molecules. Studies on transfection of connexin genes into tumor cells suggest that certain connexin genes (e.g., cx 26, cx 43 and cx 32) act as tumor-suppressor genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号