首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Secretory leukoprotease inhibitor (SLPI), a 12-kDa serine antiprotease, normally protects the upper airway epithelial surface from attack by neutrophil elastase (NE). In the context that a variety of inflammatory lung diseases are characterized by large neutrophil burdens with resultant high levels of NE in the lung, recombinant SLPI (rSLPI), a molecule identical to natural SLPI, may be an effective means to augment the anti-NE protective screen of the lung. To determine whether intravenous rSLPI will augment respiratory tract and epithelial surface levels of SLPI and anti-NE capacity, rSLPI was administered intravenously to sheep and SLPI levels were quantified in plasma, lung lymph (as a measure of lung interstitial levels), lung epithelial lining fluid (ELF), and urine. rSLPI (1 g) was administered over 10 min, and after 30 min plasma levels of SLPI were 8 microM and decreased with a half-life of 1.8 h. Lymph SLPI levels paralleled the plasma levels: 4 h after infusion the lymph-to-plasma ratio was 0.8. ELF SLPI levels paralleled the lymph levels: 4 h after infusion the ELF-to-lymph ratio was 0.3. Western analysis demonstrated intact SLPI in lymph and ELF, and functional analysis showed increases in lymph and ELF anti-NE capacity that paralleled the levels of SLPI. As might be expected from a protein with a molecular mass of 12 kDa, urine excretion was high, with 20% of the SLPI excreted over 5 h. However, if the rate of infusion was slowed, SLPI excretion decreased significantly, with a 3-h infusion associated with 9% excretion and a 12-h infusion associated with less than 0.2% excretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Neutrophil elastase is thought to contribute to the lung pathology in patients with cystic fibrosis (CF). Therefore, intrapulmonary application of elastase inhibitors might be beneficial for these patients. Inactivation of such inhibitors by bacterial proteinases, however, is an important consideration in this therapy. We studied the effects of Staphylococcus aureus proteinase (STAP) and Pseudomonas aeruginosa elastase (PsE) on native (alpha 1-AT) and recombinant (rAAT) alpha 1-antitrypsin, recombinant secretory leukocyte proteinase inhibitor (rSLPI) and the leech inhibitor eglin C. All inhibitors were inactivated by these bacterial proteinases showing pronounced differences in their susceptibilities to proteolytic cleavage. Comparing the turnover rate (mol of inhibitor inactivated by one mol bacterial proteinase/min), rAAT and alpha 1-AT were approximately 20,000-fold more susceptible to STAP than rSLPI and 50,000-fold more susceptible than eglin C. Pseudomonas aeruginosa elastase inactivated all inhibitors more rapidly than STAP. rAAT and alpha 1-AT were 13-fold and 17,000-fold more susceptible than rSLPI and eglin C, respectively. Incubation of the rAAT-elastase complex with equimolar amounts of STAP did not result in release of elastase activity. Upon simultaneous addition of STAP and leukocyte elastase to rAAT, there was undisturbed elastase inhibition indicating that complex formation with elastase proceeded at a faster rate than inactivation of rAAT by the bacterial proteinase. From these results of inactivation in vitro and considering the immunogenic potential of the inhibitors studied here, we conclude that rSLPI may be the appropriate choice for anti-elastase therapy in CF.  相似文献   

3.
The development of emphysema is thought to be due to an imbalance of proteases (especially neutrophil elastase [NE]) and antiproteases with loosening of the respiratory epithelium as an early event. We investigated the effect of NE on respiratory epithelial cell adherence in vitro , in the presence of varying concentrations and combinations of native inhibitors, alpha-1-proteinase inhibitor (PI) and secretory leukoprotease inhibitor (SLPI). SLPI was two to 12 times more effective than PI at preventing the effects of NE, especially when enzyme:inhibitor ratios were almost equivalent. Even when the concentration of SLPI was only 10% of the total (as in normal peripheral lung secretions), it gave greater protection than PI alone. This suggests that SLPI plays an important role in controlling neutrophil elastaseinduced inflammation and tissue damage.  相似文献   

4.
Secretory leukocyte proteinase inhibitor (SLPI) is a serine proteinase inhibitor that is produced locally in the lung by cells of the submucosal bronchial glands and by nonciliated epithelial cells. Its main function appears to be the inhibition of neutrophil elastase (NE). Recently, NE was found to enhance SLPI mRNA levels while decreasing SLPI protein release in airway epithelial cells. Furthermore, glucocorticoids were shown to increase both constitutive and NE-induced SLPI mRNA levels. In addition to NE, stimulated neutrophils also release alpha-defensins. Defensins are small, antimicrobial polypeptides that are found in high concentrations in purulent secretions of patients with chronic airway inflammation. Like NE, defensins induce interleukin-8 production in airway epithelial cells. This induction is sensitive to inhibition by the glucocorticoid dexamethasone and is prevented in the presence of alpha(1)-proteinase inhibitor. The aim of the present study was to investigate the effect of defensins on the production of SLPI and the related NE inhibitor elafin/SKALP in primary bronchial epithelial cells (PBECs). Defensins significantly increase SLPI protein release by PBECs in a time- and dose-dependent fashion without affecting SLPI mRNA synthesis. In the presence of alpha(1)-proteinase inhibitor, the defensin-induced SLPI protein release is further enhanced, but no effect was observed on SLPI mRNA levels. Dexamethasone did not affect SLPI protein release from control or defensin-treated PBECs. In addition, we observed a constitutive release of elafin/SKALP by PBECs, but this was not affected by defensins. The present results suggest a role for defensins in the dynamic regulation of the antiproteinase screen in the lung at sites of inflammation.  相似文献   

5.
A number of serine proteases, matrix metalloproteases, and cysteine proteases were evaluated for their ability to cleave and inactivate the antiprotease, secretory leucoprotease inhibitor (SLPI). None of the serine proteases or the matrix metalloproteases examined cleaved the SLPI protein. However, incubation with cathepsins B, L, and S resulted in the cleavage and inactivation of SLPI. All three cathepsins initially cleaved SLPI between residues Thr(67) and Tyr(68). The proteolytic cleavage of SLPI by all three cathepsins resulted in the loss of the active site of SLPI and the inactivation of SLPI anti-neutrophil elastase capacity. Cleavage and inactivation were catalytic with respect to the cathepsins, so that the majority of a 400-fold excess of SLPI was inactivated within 15 min by cathepsins L and S. Analysis of epithelial lining fluid samples from individuals with emphysema indicated the presence of cleaved SLPI in these samples whereas only intact SLPI was observed in control epithelial lining fluid samples. Active cathepsin L was shown to be present in emphysema epithelial lining fluid and inhibition of this protease prevented the cleavage of recombinant SLPI added to emphysema epithelial lining fluid. Taken together with previous data that demonstrates that cathepsin L inactivates alpha(1)-antitrypsin, these findings indicate the involvement of cathepsins in the diminution of the lung antiprotease screen possibly leading to lung destruction in emphysema.  相似文献   

6.
Productivity of recombinant human alpha(1)-antitrypsin (rAAT) with a genetically engineered rice cell using an inducible promoter has been studied by batch-wise and continuous production. A simple model explained the effect of proteases released from the disrupted cells on the rAAT degradation. Glucose concentration in the medium significantly affected the rAAT productivity in the continuous production, because the rAAT was induced by sugar depletion. When the fresh medium containing 5mM glucose was supplied to the continuous bioreactor, induction time was long and the productivity was low, indicating that the glucose concentration in the cells was high enough as to repress the promoter. When the glucose concentration in the fresh medium was reduced to 0.5mM, total amount of rAAT produced in 70h cultivation reached 6.7-7.6mg/g-dry cell, which was two times larger than the control medium without glucose.  相似文献   

7.
We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.  相似文献   

8.
Plant cell culture is an alternative for the production of recombinant human therapeutic proteins because of improved product safety, lower production cost, and capability for eukaryotic post‐translational modification. In this study, bioreactor production of recombinant human alpha‐1‐antitrypsin (rAAT) glycoprotein using a chemically inducible Cucumber mosaic virus (CMV) viral amplicon expression system in transgenic Nicotiana benthamiana cell culture is presented. Optimization of a chemically inducible plant cell culture requires evaluation of effects of timing of induction (TOI) and concentration of inducer (COI) on protein productivity and protein quality (biological functionality). To determine the optimal TOI, the oxygen uptake rate (OUR) of the plant cell culture was chosen as a physiological indicator for inducing maximum rAAT expression. Effects of COI on rAAT production were investigated using a semicontinuous culture, which enables the distinction between effects of growth rate and effects of inducer concentration. An optimized semicontinuous bioreactor operation was further proposed to maximize the recombinant protein production. The results demonstrated that the transgenic plant cells, transformed with the inducible viral amplicon expression system, maintain higher OUR and exhibit lower extracellular protease activity and lower total phenolics concentration in the optimized semicontinuous bioreactor process than in a traditional batch bioreactor operation, resulting in a 25‐fold increase in extracellular functional rAAT (603 µg/L) and a higher ratio of functional rAAT to total rAAT (85–90%). Surprisingly, sustained rAAT production and steady state, long‐term bioreactor operation is possible following chemical induction and establishment of the viral amplicons. Biotechnol. Bioeng. 2010; 106: 408–421. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
To investigate the acute physiological and structural changes after lung irradiation, the effects of whole-lung irradiation were investigated in fourteen sheep. Ten sheep were prepared with vascular and chronic lung lymph catheters, then a week later were given 1,500 rad whole-lung radiation and monitored for 2 days. Four sheep were given the same dose of radiation and were killed 4 h later for structural studies. Lung lymph flow increased at 3 h after radiation (14.6 +/- 2.1 ml/h) to twice the base-line flow rate (7.5 +/- 1.3), with a high lymph-to-plasma protein concentration. Pulmonary arterial pressure increased twofold from base line (18 +/- 1.6 cmH2O) at 2 h after radiation (33 +/- 3.8). Cardiac output and systemic pressure in the aorta did not change after lung radiation. Arterial O2 tension decreased from 85 +/- 3 to 59 +/- 4 Torr at 1 day after radiation. Lymphocyte counts in both blood and lung lymph decreased to a nadir by 4 h and remained low. Thromboxane B2 concentration in lung lymph increased from base line (0.07 +/- 0.03 ng/ml) to peak at 3 h after radiation (8.2 +/- 3.7 ng/ml). The structural studies showed numerous damaged lymphocytes in the peripheral lung and bronchial associated lymphoid tissue. Quantitative analysis of the number of granulocytes in peripheral lung showed no significant change (base line 6.2 +/- 0.8 granulocytes/100 alveoli, 4 h = 10.3 +/- 2.3). The most striking change involved lung airways. The epithelial lining of the majority of airways from intrapulmonary bronchus to respiratory bronchiolus revealed damage with the appearance of intracellular and intercellular cell fragments and granules. This new large animal model of acute radiation lung injury can be used to monitor physiological, biochemical, and morphological changes after lung radiation. It is relevant to the investigation of diffuse oxidant lung injury as well as to radiobiology per se.  相似文献   

10.
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.  相似文献   

11.
To evaluate the strategy for potentially treating respiratory disorders with genetically modified T-lymphocytes, the interleukin-2 (IL-2)-dependent murine T-cell line, CTLL2, was genetically altered with the Escherichia coli beta-galactosidase (beta-gal) gene (lacZ) in vitro with a retroviral vector and the modified T-cells were transplanted directly to the respiratory epithelial surface of syngeneic C57Bl/6 mice. Southern and Northern analyses confirmed that the neomycin-selected modified T-cells contained and expressed the lacZ gene. The fate of the modified T-cells (CTLL2/lacZ) was followed by flow cytometry with T-cell surface marker Thy1.2 and fluorescent beta-gal analysis. One day after transplantation (7.5 x 10(5) CTLL2/lacZ T-cells/g of body weight), 95 +/- 3% of the Thy1.2+ T-cells recovered from respiratory epithelial lining fluid (ELF) were beta-gal+. Importantly, the modified T-cells remained in the lung for some time; at 3 days, Thy1.2+ beta-gal+ T-cells represented 63 +/- 12% of ELF Thy1.2+ T-cells and 59 +/- 6% of Thy1.2+ T-cells recovered from the whole lung. At 7 days, 33 +/- 8% of the Thy 1.2+ cells in ELF and 75 +/- 6% of the Thy1.2+ cells in whole lung were Thy1.2+ beta-gal+. In contrast, the proportion of the Thy1.2+ beta-gal+ T-cells in the spleen, the major extrapulmonary lymphatic organ, never rose above 3 +/- 1% of the total Thy1.2+ cells. The number of Thy1.2+ beta-gal+ T-cells in the lung could be modified by the systemic administration of IL-2, with whole lung Thy1.2+ beta-gal+ T-cells increasing 4.6-fold 3 days after transplantation, compared with non-IL-2-treated animals. These studies suggest that direct transplantation of genetically modified T-cells into the lung is feasible and represents a viable strategy for lung-specific gene transfer.  相似文献   

12.

Background

Cystic fibrosis is a debilitating lung disease due to mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) and is associated with chronic infections resulting in elevated myeloperoxidase activity and generation of hypochlorous acid (HOCl). CFTR mutations lead to decreased levels of glutathione (GSH) and thiocyanate (SCN) in the epithelial lining fluid (ELF). Hypertonic saline is used to improve lung function however the mechanism is uncertain.

Methods

In the present study, the effect of GSH and SCN on HOCl-mediated cell injury and their changes in the ELF after hypertonic saline nebulization in wild type (WT) and CFTR KO mice was examined. CFTR sufficient and deficient lung cells were assessed for GSH, SCN and corresponding sensitivity towards HOCl-mediated injury, in vitro.

Results

CFTR (-) cells had lower extracellular levels of both GSH and SCN and were more sensitive to HOCl-mediated injury. In vivo, hypertonic saline increased ELF GSH in the WT and to a lesser extent in the CFTR KO mice but only SCN in the WT ELF. Finally, potential protective effects of GSH and SCN at concentrations found in the ELF against HOCl toxicity were examined in vitro.

Conclusions

While the concentrations of GSH and SCN associated with the WT ELF protect against HOCl toxicity, those found in the CFTR KO mice were less sufficient to inhibit cell injury. These data suggests that CFTR has important roles in exporting GSH and SCN which are protective against oxidants and that hypertonic saline treatment may have beneficial effects by increasing their levels in the lung.  相似文献   

13.
We examined the lymphatic concentration of 99mTc-albumin deposited in the air spaces of anesthetized sheep to determine whether changes in the concentration reflected changes in lung epithelial function. Five control sheep were ventilated with an aerosol of 99mTc-albumin for 6 min, and the lung lymphatic concentration of the tracer was monitored for the next 2 h. During the last 45 min the lymphatic concentration stabilized at a value that was 0.03 +/- 0.01% of the estimated value in the air spaces. Pulmonary vascular hypertension, induced in seven sheep by increasing the left atrial pressure 20 cmH2O for 4 h, increased the lung lymph flow from a base-line value of 3 +/- 2 to 21 +/- 14 ml/h. This caused the concentration of the 99mTc-albumin in the lymph to double to 0.07 +/- 0.03% of the air space concentration (P less than 0.01). Lung injury induced by infusing 0.08-0.10 ml/kg oleic acid intravenously in seven other sheep increased the lymphatic concentration of the 99mTc-albumin 10-fold to 0.31 +/- 0.09% of the air space concentration (P less than 0.01). The increased tracer concentration in the sheep with pulmonary vascular hypertension could be the result of the increased lymph flow causing a diversion of tracer into the lymphatics. However, a mathematical model showed that the 10-fold increase in the lymphatic concentration in the sheep with lung injury was primarily the result of an increase in both permeability and surface area of the epithelium that participated in the transfer of the 99mTc-albumin from the air spaces into the lung tissue drained by the lymphatics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Normal alveolar epithelial lining fluid contains high levels of glutathione   总被引:7,自引:0,他引:7  
The epithelial cells on the alveolar surface of the human lower respiratory tract are vulnerable to toxic oxidants derived from inhaled pollutants or inflammatory cells. Although these lung cells have intracellular antioxidants, these defenses may be insufficient to protect the epithelial surface against oxidants present at the alveolar surface. This study demonstrates that the epithelial lining fluid (ELF) of the lower respiratory tract contains large amounts of the sulfhydryl-containing antioxidant glutathione (GSH). The total glutathione (the reduced form GSH and the disulfide GSSG) concentration of normal ELF was 140-fold higher than that in plasma of the same individuals, and 96% of the glutathione in ELF was in the reduced form. Compared with nonsmokers, cigarette smokers had 80% higher levels of ELF total glutathione, 98% of which was in the reduced form. Studies of cultured lung epithelial cells and fibroblasts demonstrated that these concentrations of reduced glutathione were sufficient to protect these cells against the burden of H2O2 in the range released by alveolar macrophages removed from the lower respiratory tract of nonsmokers and smokers, respectively, suggesting that the glutathione present in the alveolar ELF of normal individuals likely contributes to the protective screen against oxidants in the extracellular milieu of the lower respiratory tract.  相似文献   

15.
Transgenic plant cell cultures offer a number of advantages over alternative host expression systems, but so far relatively low product concentrations have been achieved. In this study, transgenic rice cells are used in a two-compartment membrane bioreactor (CELLine 350, Integra Biosciences) for the production of recombinant alpha-1-antitrypsin (rAAT). Expression of rAAT is controlled by the rice alpha-amylase (RAmy3D) promoter, which is induced in the absence of sugar. The extracellular product is retained in the bioreactor's relatively small cell compartment, thereby increasing product concentration. Due to the packed nature of the cell aggregates in the cell compartment, a clarified product solution can be withdrawn from the bioreactor. Active rAAT reached levels of 100-247 mg/L (4-10% of the total extracellular protein) in the cell compartment at 5-6 days postinduction, and multiple inductions of the RAmy3D promoter were demonstrated.  相似文献   

16.
Transgenic rice cell cultures, capable of producing recombinant human alpha(1)-antitrypsin (rAAT), were scaled up from shake flasks to a 5-L bioreactor. The maximum specific growth rates (mu(max)) observed from two bioreactor runs were 0.40 day(-1) (doubling time of 1.7 days) and 0.47 day(-1) (doubling time of 1.5 days), and the maximum specific oxygen uptake rates were 0.78 and 0.84 mmol O(2)/(g dw h). Using a metabolically regulated rice alpha-amylase (RAmy3D) promoter, signal peptide, and terminator, sugar deprivation turned on rAAT expression, and rAAT was secreted into the culture medium. After 1 day of culture in sugar-free medium, there was still continued biomass growth, oxygen consumption, and viability. Extracellular concentrations of 51 and 40 mg active rAAT/L were reached 1.7 and 2.5 days, respectively, after induction in a sugar-free medium. Volumetric productivities for two batch cultures were 7.3 and 4.6 mg rAAT/(L day), and specific productivities were 3.2 and 1.6 mg rAAT/(g dw day). Several different molecular weight bands of immunoreactive rAAT were observed on immunoblots.  相似文献   

17.
The effects of increased hydrostatic pressure on the concentrations of hyaluronan (hyaluronic acid) in lung lymph and serum were investigated in awake sheep with a cannula in the efferent vessel from the caudal mediastinal lymph node. Lung lymph was sampled at base line [left atrial pressure (LAP) 6.5 +/- 1.7 mmHg] and after two increases of LAP to 25.7 +/- 2.2 mmHg (level 1) and 37.0 +/- 5.1 mmHg (level 2). The lung lymph flow increased from 1.9 +/- 0.5 at base line to 9.3 +/- 2.2 and 15.9 +/- 0.7 ml/30 min, and the lymph-to-plasma concentration ratio of total protein decreased from 0.63 +/- 0.02 to 0.32 +/- 0.04 and 0.32 +/- 0.05 at the two elevated levels of LAP, respectively. The hyaluronan concentration in lung lymph was unchanged, and there was a flow-dependent elimination of hyaluronan from the lung that increased from 23 +/- 8 to 87 +/- 19 and 137 +/- 37 micrograms/30 min, respectively. The lung concentration of hyaluronan was 167 +/- 28 micrograms/g fresh lung, and at base line it was calculated that slightly less than 2% of the lung hyaluronan was eliminated by the lymphatic route in 24 h. If extrapolated to 24 h, the elimination rate of hyaluronan seen during elevated LAP would result in lymphatic elimination of 18% of the lung hyaluronan over this time period. Since hyaluronan is responsible for part of the protein exclusion in the extracellular matrix, it is plausible that washout of interstitial hyaluronan contributes to the decrease in albumin exclusion from the interstitium that occurs after an elevation of LAP.  相似文献   

18.
The macrophage-derived cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as the major mediator of endotoxin-induced injury. To examine whether a single infusion of human recombinant TNF alpha (rTNF alpha) reproduces the pulmonary effects of endotoxemia, we infused rTNF alpha (0.01 mg/kg) over 30 min into six chronically instrumented awake sheep and assessed the ensuing changes in hemodynamics, lung lymph flow and protein concentration, and number of peripheral blood and lung lymph leukocytes. In addition, levels of thromboxane B2, 6-ketoprostaglandin F1 alpha, prostaglandin E2, and leukotriene B4 were measured in lung lymph. Pulmonary arterial pressure (Ppa) peaked within 15 min of the start of rTNF alpha infusion [base-line Ppa = 22.0 +/- 1.5 (SE) cmH2O; after 15 min of rTNF alpha infusion, Ppa = 54.2 +/- 5.4] and then fell toward base line. The pulmonary hypertension was accompanied by hypoxemia and peripheral blood and lung lymph leukopenia, both of which persisted throughout the 4 h of study. These changes were followed by an increase in protein-rich lung lymph flow (base-line lymph protein clearance = 1.8 +/- 0.4 cmH2O; 3 h after rTNF alpha infusion, clearance = 5.6 +/- 1.2), consistent with an increase in pulmonary microvascular permeability. Cardiac output and left atrial pressure did not change significantly throughout the experiment. Light-microscopic examination of lung tissue at autopsy revealed congestion, neutrophil sequestration, and patchy interstitial edema. We conclude that rTNF alpha induces a response in awake sheep remarkable similar to that of endotoxemia. Because endotoxin is a known stimulant of TNF alpha production, TNF alpha may mediate endotoxin-induced lung injury.  相似文献   

19.
We previously showed, during quasi-steady-state exposures, that the rate of inhaled NO2 uptake displays reaction-mediated characteristics (J. Appl. Physiol. 68: 594-603, 1990). In vitro kinetic studies of pulmonary epithelial lining fluid (ELF) demonstrated that NO2 interfacial transfer into ELF exhibits first-order kinetics with respect to NO2, attains [NO2]-dependent rate saturation, and is aqueous substrate dependent (J. Appl. Physiol. 71: 1502-1510, 1991). We have extended these observations by evaluating the kinetics of NO2 gas phase disappearance in isolated ventilating rat lungs. Transient exposures (2-3/lung at 25 degrees C) employed rebreathing (NO2-air) from a non-compliant continuously stirred closed chamber. We observed that 1) NO2 uptake rate is independent of exposure period, 2) NO2 gas phase disappearance exhibited first-order kinetics [initial rate (r*) saturation occurred when [NO2] > 11 ppm], 3) the mean effective rate constant (k*) for NO2 gas phase disappearance ([NO2] < or = 11 ppm, tidal volume = 2.3 ml, functional residual capacity = 4 ml, ventilation frequency = 50/min) was 83 +/- 5 ml/min, 4) with [NO2] < or = 11 ppm, k* and r* were proportional to tidal volume, and 5) NO2 fractional uptakes were constant across [NO2] (< or = 11 ppm) and tidal volumes but exceeded quasi-steady-state observations. Preliminary data indicate that this divergence may be related to the inspired PCO2. These results suggest that NO2 reactive uptake within rebreathing isolated lungs follows first-order kinetics and displays initial rate saturation, similar to isolated ELF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Secretory leucoprotease inhibitor (SLPI) is a non-glycosylated protein produced by epithelial cells, macrophages, and neutrophils and was initially identified as a serine protease inhibitor of the neutrophil proteases elastase and cathepsin G. In addition to its antiprotease activity, SLPI has been shown to exhibit anti-inflammatory properties including down-regulation of tumor necrosis factor-alpha expression by lipopolysaccharide (LPS) in monocytes, inhibition of NF-kappaB activation by IgG immune complexes in a rat model of acute lung injury, and prevention of human immunodeficiency virus infectivity in monocytic cells via as yet unidentified mechanisms. In this report we have shown that SLPI prevents LPS-induced NF-kappaB activation by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. We have also demonstrated that SLPI prevents LPS-induced interleukin-1 receptor-associated kinase and IkappaBbeta degradation. In addition, we have demonstrated that oxidized SLPI, a variant of SLPI that has diminished antiprotease activity, cannot prevent LPS-induced NF-kappaB activation or Inhibitor kappaB alpha/beta degradation indicating that the anti-inflammatory effect of SLPI on the LPS-signaling pathway is dependent on its antiprotease activity. These results suggest that SLPI may be inhibiting proteasomal degradation of NF-kappaB regulatory proteins, an effect that is dependent on the antiprotease activity of SLPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号