首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Chestnut blight, caused by the fungus Cryphonectria parasitica, has been effectively controlled with double-stranded RNA hypoviruses in Europe for over 40 years. The marked reduction in the virulence of C. parasitica by hypoviruses is a phenomenon known as hypovirulence. This virus-fungus pathosystem has become a model system for the study of biological control of fungi with viruses. We studied variation in tolerance to hypoviruses in fungal hosts and variation in virulence among virus isolates from a local population in Italy. Tolerance is defined as the relative fitness of a fungal individual when infected with hypoviruses (compared to being uninfected); virulence is defined for each hypovirus as the reduction in fitness of fungal hosts relative to virus-free hosts. Six hypovirus-infected isolates of C. parasitica were sampled from the population, and each hypovirus was transferred into six hypovirus-free recipient isolates. The resulting 36 hypovirus-fungus combinations were used to estimate genetic variation in tolerance to hypoviruses, in hypovirus virulence, and in virus-fungus interactions. Four phenotypes were evaluated for each virus-fungus combination to estimate relative fitness: (i) sporulation, i.e., the number of asexual spores (conidia) produced; (ii) canker area on field-inoculated chestnut trees, (iii) vertical transmission of hypoviruses into conidia, and (iv) conidial germination. Two-way analysis of variance (ANOVA) revealed significant interactions (P < 0.001) between viruses and fungal isolates for sporulation and canker area but not for conidial germination or transmission. One-way ANOVA among hypoviruses (within each fungal isolate) and among fungal isolates (within each hypovirus) revealed significant genetic variation (P < 0.01) in hypovirus virulence and fungal tolerance within several fungal isolates, and hypoviruses, respectively. These interactions and the significant genetic variation in several fitness characters indicate the potential for future evolution of these characters. However, biological control is unlikely to break down due to evolution of tolerance to hypoviruses in the fungus because the magnitudes of tolerance and interactions were relatively small.  相似文献   

2.
Chen B  Geletka LM  Nuss DL 《Journal of virology》2000,74(16):7562-7567
Infectious cDNA clones of mild (CHV1-Euro7) and severe (CHV1-EP713) hypovirus strains responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica were used to construct viable chimeric viruses. Differences in virus-mediated alterations of fungal colony morphology, growth rate, and canker morphology were mapped to a region of open reading frame B extending from nucleotides 2,363 to 9, 904. By swapping domains within this region, it was possible to generate chimeric hypovirus-infected C. parasitica isolates that exhibited a spectrum of defined colony and canker morphologies. Several severe strain traits were observed to be dominant. It was also possible to uncouple the severe strain traits of small canker size and suppression of asexual sporulation. For example, fungal isolates infected with a chimera containing nucleotides 2363 through 5310 from CHV1-Euro7 in a CHV1-713 background formed small cankers that were similar in size to that caused by CHV1-EP713-infected isolates but with the capacity for producing asexual spores at levels approaching that observed for fungal isolates infected with the mild strain. These results demonstrate that hypoviruses can be engineered to fine-tune the interaction between a pathogenic fungus and its plant host. The identification of specific hypovirus domains that differentially contribute to canker morphology and sporulation levels also provides considerable utility for continuing efforts to enhance biological control potential by balancing hypovirulence and ecological fitness.  相似文献   

3.
Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field.  相似文献   

4.
低毒病毒及板栗疫病菌低毒力机制   总被引:1,自引:0,他引:1  
低毒病毒是一类存在于板栗疫病菌细胞质中自主复制的无衣壳正链RNA病毒.感染低毒病毒后,板栗疫病菌的致病力显著降低,色素分泌减少,菌丝体由感染病毒前的桔黄色变为白色,产孢量降低或不产孢,漆酶表达水平明显下降.低毒病毒侵染性克隆的获得以及高效转化和转染体系的建立,使得低毒病毒成为目前唯一可以进行全面遗传操作的真菌病毒.利用低毒病毒作为探针来探测板栗疫病菌的致病力组成和毒力调节机制,已获得了一些很有意义的发现.本文介绍近几年低毒病毒及其与真菌相互作用的研究进展,包括低毒病毒的基因组和功能基因研究、低毒病毒和线粒体损害引起的板栗疫病菌低毒力机制、板栗疫病菌的RNA沉默系统以及低毒病毒抗RNA沉默的机制.低毒病毒/板栗疫病菌系统已经成为研究病毒与宿主相互作用以及病原真菌致病机理的很好的模式系统.  相似文献   

5.
6.
Biological control of plant diseases generally requires release of living organisms into the environment. Cryphonectria hypoviruses function as biological control agents for the chestnut blight fungus, Cryphonectria parasitica, and hypovirus-infected C. parasitica strains can be used to treat infected trees. We used naturally occurring molecular marker polymorphisms to examine the persistence and dissemination of the three genomes of a hypovirus-infected C. parasitica strain, namely, the double-stranded RNA genome of Cryphonectria hypovirus 1 (CHV1) and the nuclear and mitochondrial genomes of its fungal host. The hypovirus-infected strain was experimentally introduced into a blight-infested chestnut coppice forest by treating 73 of 246 chestnut blight cankers. Two years after introduction, the hypovirus had disseminated to 36% of the untreated cankers and to 35% of the newly established cankers. Spread of the hypovirus was more frequent within treated sprout clusters than between sprout clusters. Mitochondrial DNA of the introduced fungus also was transferred into the resident C. parasitica population. Concomitant transfer of both the introduced hypovirus and mitochondrial DNA was detected in almost one-half of the treated cankers analyzed. The introduced mitochondrial DNA haplotype also was found in three resident isolates from newly established cankers. The nuclear genome of the introduced strain persisted in the treated cankers but did not spread beyond them.  相似文献   

7.
8.
We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5'-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences.  相似文献   

9.
Chestnut blight is controlled in Europe by using Cryphonectria hypovirus CHV1, a non-encapsulated RNA virus. The chestnut blight fungus, Cryphonectria parasitica, is weakened by the virus, and healing tissue growth occurs in the host tree. Transmission of this cytoplasmic hypovirus is restricted by the incompatibility system of the fungus, so that the hypovirus can be transmitted only between isolates of the same or closely related vegetative compatibility (vc) types. Hypovirulent isolates of C. parasitica (all of the French subtype CHV1-F1) from Castilla y León (NW Spain) were compared with virulent isolates in both laboratory (cut stems) and field inoculations (in two orchards in the province of León and one orchard in the province of Zamora). The tests were performed with the most common vc types in the region, EU1 and EU11. The cut stem assay revealed that the hypovirulent isolates of vc type EU1 did not reduce the growth of virulent cankers. By contrast, four hypovirulent strains H1, H4, H5 and H6 (all vc type EU11) reduced the growth of virulent isolates in the cut stem assay. Field tests showed that hypovirulent isolates of EU1 and EU11 were effective in reducing canker in both orchards in León with all treatments tested; however, in Zamora, where only EU11 was tested, all the treatments failed except H1, which was able to reduce growth of the canker eighteen months after the inoculation. The development of hypovirulence suggests that hypovirus subtype F1 is well adapted in the province of León. Both naturally extended and inoculated hypoviruses appear to have reduced the incidence of the canker, thus improving chestnut stands. However, the inoculations were not as effective in the orchards in Zamora. This indicates that the disease could be controlled in Castilla y León by inoculation of trees with hypovirulent strains, but that more tests should be done in provinces where the hypovirus is still not present.  相似文献   

10.
Kex2-silenced strains of Cryphonectria parasitica, the ascomycete causal agent of chestnut blight, show a significant reduction in virulence, reduced sexual and asexual sporulation and reductions in mating and fertility. Due to this and the known involvement of Kex2 in the processing of important proproteins in other systems, we searched the whole C. parasitica genome for putative Kex2 substrates. Out of 1299 open reading frames (ORFs) predicted to be secreted, 222 ORFs were identified as potential Kex2 substrates by this screen. Within the putative substrates we identified cell wall modifying proteins, putative proteinases, lipases, esterases, and oxidoreductases. This in silico screen also uncovered a family of nine secreted aspartic proteinases (SAPs) of C. parasitica. Northern blot analyses of this gene family showed differential expression when exposed to chestnut wood and Cryphonectria hypovirus 1 (CHV1). Due to the reduction in fungal virulence known to be caused upon hypoviral infection of C. parasitica, the differential gene expression observed, and the known involvement of SAPs in virulence in other systems, we conducted deletion analyses of four of these proteinases, representing different expression patterns. Deletion of each of the four SAPs did not affect growth rates, sporulation or virulence, suggesting that none of the considered SAPs is essential for the full development or virulence of C. parasitica under the conditions tested.  相似文献   

11.
12.
Three isolates of the entomopathogen Beauveria bassiana along with one strain of Metarhizium anisopliae were cultured on seven media with different carbon/nitrogen (C/N) ratios. The effect of nutrition on virulence of the isolates was evaluated via measurement of colony growth, spore yield, germination speed, conidial C/N ratio and Pr1 (a serine protease) activity. 'Osmotic stress' medium produced the lowest colony growth with low numbers of conidia in all isolates. However, these conidia showed a high germination rate and virulence. However, conidial Pr1 activity was low in some isolates. In most but not in all cases conidia from 1% yeast extract, 2% peptone and low (10 : 1) C/N medium had higher Pr1 activity compared with conidia from other media. However, in some instances we could not conclude that there was a relationship among germination rate, conidial Pr1 activity and virulence. C/N ratio of conidia was statistically different among various media and fungal isolates. Conidia with lower C/N ratio generally produced lower LT(50) (lowest median lethal time) values (more virulent). Insect-passaged conidia from different media had lower C/N ratio compared with similar conidia from artificial cultures. Therefore, they should be more virulent than in vitro produced conidia. As germination rate, conidial Pr1 activity and C/N ratio are independent of host, it seems that host-related determinants such as insect cuticle and physiology and environmental conditions may influence host susceptibility and therefore fungal isolate virulence towards host insects.  相似文献   

13.
《Fungal biology》2022,126(10):648-657
We evaluated the virulence of Beauveria bassiana and Metarhizium isolates from soil collected across different vegetation types in Queensland, against chlorantraniliprole-resistant and insecticide-susceptible diamondback moth (DBM) larvae. Host insecticide resistance status had no effect on susceptibility to the pathogens when conidia were topically applied to larvae in the laboratory, and one B. bassiana isolate was significantly more virulent to larvae than the others (seven days after inoculation). The influence of temperature (15, 20, 25 or 30 °C): (i) at the point of host inoculation with conidia and (ii) when the pathogens had already initiated infection and were proliferating in the host haemocoel, was determined experimentally for its influence on virulence, disease progression, and sporulation. Temperature at inoculation had a greater effect on host insect mortality than it did when the fungus was already proliferating in the host haemocoel. The rearing temperature of hosts prior to inoculation had a greater effect on host susceptibility to disease than starvation of the larvae at the time of inoculation. Our results also show that each fungal isolate has its own temperature relations and that these can vary considerably across isolates, and at different points in the pathogen life cycle (germination and cuticular penetration versus growth in the host haemocoel). Temperature also had an idiosyncratic effect, across isolates and across the variables typically used to assess the potential of fungal entomopathogens as biological control agents (time to death, mortality and sporulation rates). This study demonstrates that in addition to pathogenicity and virulence, the temperature relationships of each fungal isolate when infecting insects needs to be taken into account if we are to understand their ecology and use them effectively in pest management.  相似文献   

14.
15.
Virulence-attenuating hypoviruses of the species Cryphonectria hypovirus 1 (CHV1) encode a papain-like protease, p29, that shares similarities with the potyvirus-encoded suppressor of RNA silencing HC-Pro. We now report that hypovirus CHV1-EP713-encoded p29 can suppress RNA silencing in the natural host, the chestnut blight fungus Cryphonectria parasitica. Hairpin RNA-triggered silencing was suppressed in C. parasitica strains expressing p29, and transformation of a transgenic green fluorescent protein (GFP)-silenced strain with p29 resulted in an increased number of transformants with elevated GFP expression levels. The CHV1-EP713 p29 protein was also shown to suppress both virus-induced and agroinfiltration-induced RNA silencing and systemic spread of silencing in GFP-expressing transgenic Nicotiana benthamiana line 16c plants. The demonstration that a mycovirus encodes a suppressor of RNA silencing provides circumstantial evidence that RNA silencing in fungi may serve as an antiviral defense mechanism. The observation that a phylogenetically conserved protein of related plant and fungal viruses functions as a suppressor of RNA silencing in both fungi and plants indicates a level of conservation of the mechanisms underlying RNA silencing in these two groups of organisms.  相似文献   

16.
17.
H. L. Lloyd 《Mycopathologia》1972,47(4):317-322
Morphologically, conidia ofAlternaria tenuis exhibit dual forms, A and B. Virulent single conidial isolates commonly produce a considerably higher percentage of A-type conidia than B-type conidia. While avirulent isolates produce more B-type than A-type conidia. Genetic factors governing conidial morphology appear to be extranuclear and not genetically linked to virulence. Selection for A-type conidia for six cultural cycles resulted in a rapid and marked segregation of A-type morphology and virulence.The relationship between conidial morphology and virulence commonly observed in fresh isolates appears fortuitous and is apparently due to separate and independent selection pressures (adverse climate and resistant host tissue) operating on the sameA. tenuis population which results in two genetically independent traits (morphology and virulence) in the population appearing linked. The frequent breakdown of this relationship, especially in culture, indicates that conidial morphology is not a reliable criterion for virulence.  相似文献   

18.
Current theory suggests that cost-benefit relationships govern the evolution of parasite virulence. The cost of virulence is expected to be high for fungal viruses, which are obligate parasites and completely dependent on their hosts. The majority of fungal viruses infect their hosts without any apparent symptoms. Cryphonectria hypovirus 1 (CHV-1), in contrast, is virulent and debilitates its host, Cryphonectria parasitica. However, the virulence of CHV-1 is associated with high costs for virus transmission, such as an attenuated fungal growth and reduced production of the fungal spores spreading the virus. In this study, we tested the hypothesis that virulence may not only have costs but also benefits for transmitting CHV-1 across vegetative incompatibility barriers between fungi. We investigated viruses with low, medium, and high virulence, and determined their transmission rate per host-to-host contact (transmissibility). The average transmission rate across all combinations tested was 53% for the most virulent virus, 37% for the virus with intermediate virulence, and 20% for the virus with lowest virulence. These results showed that increased virulence was strongly correlated with increased transmissibility, potentially counterbalancing virulence costs. This association of virulence and transmissibility may explain why CHV-1 spread widely and evolved higher virulence than most other fungal viruses.  相似文献   

19.
20.
The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg(2+) transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号