首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice in which Cbl is unable to bind PI3K (YF mice) display increased bone volume due to enhanced bone formation and repressed bone resorption during normal bone homeostasis. We investigated the effects of disrupted Cbl-PI3K interaction on fracture healing to determine whether this interaction has an effect on bone repair. Mid-diaphyseal femoral fractures induced in wild type (WT) and YF mice were temporally evaluated via micro-computed tomography scans, biomechanical testing, histological and histomorphometric analyses. Imaging analyses revealed no change in soft callus formation, increased bony callus formation, and delayed callus remodeling in YF mice compared to WT mice. Histomorphometric analyses showed significantly increased osteoblast surface per bone surface and osteoclast numbers in the calluses of YF fractured mice, as well as increased incorporation of dynamic bone labels. Furthermore, using laser capture micro-dissection of the fracture callus we found that cells lacking Cbl-PI3K interaction have higher expression of Osterix, TRAP, and Cathepsin K. We also found increased expression of genes involved in propagating PI3K signaling in cells isolated from the YF fracture callus, suggesting that the lack of Cbl-PI3K interaction perhaps results in enhanced PI3K signaling, leading to increased bone formation, but delayed remodeling in the healing femora.  相似文献   

2.
Fracture healing is a complex event that involves the coordination of a variety of different processes. Repair is typically characterized by four overlapping stages: the initial inflammatory response, soft callus formation, hard callus formation, initial bony union and bone remodeling. However, repair can also be seen to represent a juxtaposition of two distinct forces: anabolism or tissue formation, and catabolism or remodeling. These anabolic/catabolic concepts are useful for understanding bone repair without giving the false impression of temporally distinct stages that operate independently. They are also relevant when considering intervention. In normal bone development, bone remodeling conventionally refers to the removal of calcified bone tissue by osteoclasts. However, in the context of bone repair there are two phases of tissue catabolism: the removal of the initial cartilaginous soft callus, followed by the eventual remodeling of the bony hard callus. In this review, we have attempted to examine catabolism/remodeling in fractures in a systematic fashion. The first section briefly summarizes the traditional four-stage view of fracture repair in a physiological manner. The second section highlights some of the limitations of using a temporal rather than process-driven model and summarizes the anabolic/catabolic paradigm of fracture repair. The third section examines the cellular participants in soft callus remodeling and in particular the role of the osteoclast in endochondral ossification. Finally, the fourth section examines the effects of delaying osteoclast-dependent hard callus remodeling and also poses questions regarding the crosstalk between anabolism and catabolism in the latter stages of fracture repair.  相似文献   

3.
Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2), or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO) mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects.  相似文献   

4.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

5.
Altered fracture repair in the absence of MMP9   总被引:13,自引:0,他引:13  
The regeneration of adult skeletal tissues requires the timely recruitment of skeletal progenitor cells to an injury site, the differentiation of these cells into bone or cartilage, and the re-establishment of a vascular network to maintain cell viability. Disturbances in any of these cellular events can have a detrimental effect on the process of skeletal repair. Although fracture repair has been compared with fetal skeletal development, the extent to which the reparative process actually recapitulates the fetal program remains uncertain. Here, we provide the first genetic evidence that matrix metalloproteinase 9 (MMP9) regulates crucial events during adult fracture repair. We demonstrate that MMP9 mediates vascular invasion of the hypertrophic cartilage callus, and that Mmp9(-/-) mice have non-unions and delayed unions of their fractures caused by persistent cartilage at the injury site. This MMP9- dependent delay in skeletal healing is not due to a lack of vascular endothelial growth factor (VEGF) or VEGF receptor expression, but may instead be due to the lack of VEGF bioavailability in the mutant because recombinant VEGF can rescue Mmp9(-/-) non-unions. We also found that Mmp9(-/-) mice generate a large cartilage callus even when fractured bones are stabilized, which implicates MMP9 in the regulation of chondrogenic and osteogenic cell differentiation during early stages of repair. In conclusion, the resemblance between Mmp9(-/-) fetal skeletal defects and those that emerge during Mmp9(-/-) adult repair offer the strongest evidence to date that similar mechanisms are employed to achieve bone formation, regardless of age.  相似文献   

6.
Osteogenic growth peptide enhances the rate of fracture healing in rabbits   总被引:12,自引:0,他引:12  
The discovery of growth factors, such as osteogenic growth peptide (OGP), that stimulate bone formation led to experiments to discover whether they can accelerate fracture healing. To determine whether OGP enhances the rate of healing in rabbits, fractures were made in the tibiae of New Zealand White rabbits and immobilized with either a plastic plate (unstable mechanical conditions), or a dynamic compression plate (stable mechanical conditions). OGP was administered to experimental animals by intravenous injection from day 4 until the day before sacrifice; control animals were not injected. After treatment with OGP, callus development under unstable mechanical conditions was accelerated. At 7 days, the cartilage in the centre of the callus was covered by bone and endochondral ossification had started; these events occur at 10 days in control fractures. Subsequently, endochondral ossification is completed earlier which allows the invasion of the fracture gap by cells, so that cortical union is complete by 21 to 28 days. In control fractures, bone is only beginning to form in the gaps at 28 days. There was no increase in the size of the callus in any of the experimental fractures compared to the untreated controls. Treatment with OGP has no observable effect on the rate of healing of fractures under stable mechanical conditions. These observations suggest that under unstable mechanical conditions only, the rate of callus formation and subsequent cortical healing is enhanced by treatment with OGP, but that the size of the callus is determined by mechanical and other factors.  相似文献   

7.
Wnt signaling is a key regulator of bone metabolism and fracture healing. The canonical Wnt/β-catenin pathway is regarded as the dominant mechanism, and targeting this pathway has emerged as a promising strategy for the treatment of osteoporosis and poorly healing fractures. In contrast, little is known about the role of non-canonical Wnt signaling in bone. Recently, it was demonstrated that the serpentine receptor Fzd9, a Wnt receptor of the Frizzled family, is essential for osteoblast function and positively regulates bone remodeling via the non-canonical Wnt pathway without involving β-catenin-dependent signaling. Here we investigated whether the Fzd9 receptor is essential for fracture healing using a femur osteotomy model in Fzd9 −/− mice. After 10, 24 and 32 days the fracture calli were analyzed using biomechanical testing, histomorphometry, immunohistochemistry, and micro-computed tomography. Our results demonstrated significantly reduced amounts of newly formed bone at all investigated healing time points in the absence of Fzd9 and, accordingly, a decreased mechanical competence of the callus tissue in the late phase of fracture healing. In contrast, cartilage formation and numbers of osteoclasts degrading mineralized matrix were unaltered. β-Catenin immunolocalization showed that canonical Wnt-signaling was not affected in the absence of Fzd9 in osteoblasts as well as in proliferating and mature chondrocytes within the fracture callus. The expression of established differentiation markers was not altered in the absence of Fzd9, whereas chemokines Ccl2 and Cxcl5 seemed to be reduced. Collectively, our results suggest that non-canonical signaling via the Fzd9 receptor positively regulates intramembranous and endochondral bone formation during fracture healing, whereas it does not participate in the formation of cartilage or in the osteoclastic degradation of mineralized matrix. The finding that Fzd9, in addition to its role in physiological bone remodeling, regulates bone repair may have implications for the development of treatments for poorly or non-healing fractures.  相似文献   

8.
Regulation of fracture repair by growth factors.   总被引:39,自引:0,他引:39  
Fractured bones heal by a cascade of cellular events in which mesenchymal cells respond to unknown regulators by proliferating, differentiating, and synthesizing extracellular matrix. Current concepts suggest that growth factors may regulate different steps in this cascade (10). Recent studies suggest regulatory roles for PDGF, aFGF, bFGF, and TGF-beta in the initiation and the development of the fracture callus. Fracture healing begins immediately following injury, when growth factors, including TGF-beta 1 and PDGF, are released into the fracture hematoma by platelets and inflammatory cells. TGF-beta 1 and FGF are synthesized by osteoblasts and chondrocytes throughout the healing process. TGF-beta 1 and PDGF appear to have an influence on the initiation of fracture repair and the formation of cartilage and intramembranous bone in the initiation of callus formation. Acidic FGF is synthesized by chondrocytes, chondrocyte precursors, and macrophages. It appears to stimulate the proliferation of immature chondrocytes or precursors, and indirectly regulates chondrocyte maturation and the expression of the cartilage matrix. Presumably, growth factors in the callus at later times regulate additional steps in repair of the bone after fracture. These studies suggest that growth factors are central regulators of cellular proliferation, differentiation, and extracellular matrix synthesis during fracture repair. Abnormal growth factor expression has been implicated as causing impaired or abnormal healing in other tissues, suggesting that altered growth factor expression also may be responsible for abnormal or delayed fracture repair. As a complete understanding of fracture-healing regulation evolves, we expect new insights into the etiology of abnormal or delayed fracture healing, and possibly new therapies for these difficult clinical problems.  相似文献   

9.
Low-intensity (<100 mW/cm(2)) pulsed ultrasound (US) is an established therapy for fracture repair. In both animal and human trials, such US has been shown to facilitate fresh fracture repair and initiate healing in fractures with repair defects. However, the mechanism by which US achieves these outcomes is not clear. One possible mechanism is the direct stimulation of bone formation. To investigate this hypothesis, the current study investigated the mRNA response of isolated bone-forming cells (UMR-106 cells) to a single 20-min dose of low-intensity pulsed US. Using a novel US-cell coupling method, US was found to stimulate expression of the immediate-early response genes c-fos and COX-2 and elevate mRNA levels for the bone matrix proteins ALP and OC. These findings suggest that low-intensity pulsed US has a direct effect on bone formation. This may contribute to the beneficial effect of low-intensity pulsed US on fracture repair.  相似文献   

10.
Progressive tissue expansion induces significant gross, histologic, and bony changes in skulls and long bones of neonatal miniature swine. These bony changes consist of erosion underlying tissue expanders, with bony lipping and bone deposition at the periphery of the expander. Cranial suture lines underneath expanders appear effaced and convoluted. Serial CT scans reveal decreased bone thickness and volume (p less than 0.02) but identical bone density (p = 0.60) beneath expanders. Increased bone volume and thickness occur at the periphery of expanders (p less than 0.02). Bone density (CT number) is unaffected by tissue expansion in both cranial and long bones. These findings have histomorphometric correlates: Osteoclastic bone resorption occurs underneath expanders with periosteal reaction at the periphery of expanders. Cranial sutures are similarly affected, but no cranial synostosis results. No changes to the inner table of the skull or stigmata of increased intracranial pressure were observed either in CT scans or in behavioral changes in long-term animals. The pathophysiology of bony changes is a remodeling effect, not one of simple pressure deformation. Increased bone resorption and complete inhibition of bone formation occur until the pressure is removed. Cranial bone is significantly more affected than long bone. After removal of the expanders, reparative bone remodeling begins within 5 days and nearly complete healing of the cranial defects occurs within 2 months (p less than 0.02). No plagiocephaly results despite early coronal suture changes. On the basis of this study, we conclude that tissue expansion causes significant but reversible effects, readily monitored by high-resolution CT scans, on neonatal and infant cranial and long bones.  相似文献   

11.
Heparanase mRNA expression during fracture repair in mice   总被引:1,自引:1,他引:0  
Bone fracture healing takes place through endochondral ossification where cartilaginous callus is replaced by bony callus. Vascular endothelial growth factor (VEGF) is a requisite for endochondral ossification, where blood vessel invasion of cartilaginous callus is crucial. Heparanase is an endoglucuronidase that degrades heparan sulfate proteoglycans (HSPG) and releases heparin-binding growth factors including VEGF as an active form. To investigate the role of heparanase in VEGF recruitment during fracture healing, the expression of heparanase mRNA and VEGF, and vessel formation were examined in mouse fractured bone. On days 5 and 7 after the fracture, when mesenchymal cells proliferated and differentiated into chondrocytes, heparanase mRNA was detected in osteo(chondro)clasts and their precursors, but not in the inflammatory phase (day 3). On day 10, both VEGF and HSPG were produced by hypertrophic chondrocytes of the cartilaginous callus and by osteoblasts of the bony callus; numerous osteo(chondro)clasts resorbing the cartilage expressed strong heparanase signals. Adjacent to the cartilage resorption sites, angiogenesis with CD31-positive endothelial cells and osteogenesis with osteonectin-positive osteoblasts were observed. On days 14 and 21, osteoclasts in the woven bone tissue expressed heparanase mRNA. These data suggest that by producing heparanase osteo(chondro)clasts contribute to the recruitment of the active form of VEGF. Thus osteo(chondro)clasts may promote local angiogenesis as well as callus resorption in endochondral ossification during fracture healing.  相似文献   

12.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

13.
It is proposed that the external asymmetric formation of callus tissues that forms naturally about an oblique bone fracture can be predicted computationally. We present an analysis of callus formation for two cases of bone fracture healing: idealised and subject-specific oblique bone fractures. Plane strain finite element (FE) models of the oblique fractures were generated to calculate the compressive strain field experienced by the immature callus tissues due to interfragmentary motion. The external formations of the calluses were phenomenologically simulated using an optimisation style algorithm that iteratively removes tissue that experiences low strains from a large domain. The resultant simulated spatial formation of the healing tissues for the two bone fracture cases showed that the calluses tended to form at an angle equivalent to the angle of the oblique fracture line. The computational results qualitatively correlated with the callus formations found in vivo. Consequently, the proposed methods show potential as a means of predicting callus formation in pre-clinical testing.  相似文献   

14.
Type X collagen synthesis during endochondral ossification in fracture repair   总被引:13,自引:0,他引:13  
Collagen synthesis in normal connective tissue development and repair is integral to tissue stability. The appearance of a short chain collagen, designated Type X, was studied in experimental fractures created in the chicken humerus. Biosynthetic studies using [14C]proline incorporation coupled with histologic examination of the cartilaginous callus demonstrated that Type X collagen synthesis occurs during endochondral ossification in the fracture callus. Type X synthesis occurred in the areas of cartilaginous callus composed of hypertrophic and degenerative chondrocytes that were associated with increased vascularity and matrix mineralization. Synthesis of short chain collagen was not detected in either skeletal muscle or bone. Two-dimensional peptide mapping of cyanogen bromide and proteolytic fragments derived from fracture callus short chain collagen confirmed the identity of this collagen as Type X. The synthesis of Type X collagen by fracture callus is further evidence supporting its close association with the process of endochondral ossification.  相似文献   

15.
The purpose of this study was to evaluate autogenous osteogenic marrow within chondroid bone grafts in simulated alveolar defects of mice in order to determine the ability of the graft material to effectively close the cleft from an osseous standpoint and to observe the effect of the grafting procedure. Critical-sized defects were made in the premaxillary bones of male mice using a surgical trephine and a low-speed dental engine as a model of the maxillary alveolar cleft for testing bone-inductive agents. Premaxillary trephine defects were not repaired by fibrous tissue or bone formation 30 days after operation. This nonhealing bony wound of the premaxilla in mice may be useful as a model for studying the effect of bone-inductive agents on the healing of alveolar clefts. Distraction osteogenesis is a recently advanced principle of bone lengthening in which a long bone separated by osteotomy is subjected to slow progressive distraction using an external fixation device. The osteotomy site was surrounded by an external callus consisting of hyaline cartilage. The callus contained a lot of chondroid bone. The transplant bone within chondroid bone was characterized by bone formation and remodeling 30 days after transplantation. Throughout the experiment, our findings demonstrated, for the first time, that the transplant bone that contains chondroid bone may be used clinically in relation to craniofacial bone defects to improve the treatment of bone grafts.  相似文献   

16.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

17.
Zhao X  Wu ZX  Zhang Y  Gao MX  Yan YB  Cao PC  Zang Y  Lei W 《PloS one》2012,7(3):e33228
Angiotensin-converting enzyme inhibitors are widely prescribed to regulate blood pressure. High doses of orally administered perindopril have previously been shown to improve fracture healing in a mouse femur fracture model. In this study, perindopril was administered directly to the fracture area with the goal of stimulating fracture repair. Three months after being ovariectomized (OVX), tibial fractures were produced in Sprague-Dawley rats and subsequently stabilized with intramedullary wires. Perindopril (0.4 mg/kg/day) was injected locally at the fractured site for a treatment period of 7 days. Vehicle reagent was used as a control. Callus quality was evaluated at 2 and 4 weeks post-fracture. Compared with the vehicle group, perindopril treatment significantly increased bone formation, increased biomechanical strength, and improved microstructural parameters of the callus. Newly woven bone was arranged more tightly and regularly at 4 weeks post-fracture. The ultimate load increased by 66.1 and 76.9% (p<0.01), and the bone volume over total volume (BV/TV) increased by 29.9% and 24.3% (p<0.01) at 2 and 4 weeks post-fracture, respectively. These findings suggest that local treatment with perindopril could promote fracture healing in ovariectomized rats.  相似文献   

18.
Although much has been written regarding the treatment of facial bone fractures, at the present time there are no available investigations of human microscopic sections to verify the exact nature of the healing process. The consensus in the literature is that following fractures of the midface, the bone segments are united by fibrous union. Biopsies of the healed fracture sites were obtained in 10 consecutive patients who underwent secondary reconstructive procedures to correct residual deformities. Clinical assessment confirmed that the fractures were completely healed and stable. Histologic sections were obtained across the healed fracture sites, sent for H&E staining, and then examined by light microscopy. All specimens showed that the defects between the segments were obliterated by the formation of a mature compact bone. This bridging bone was characterized by concentric lamellae surrounded by a typical bony architecture. From this study it can be concluded that fractures of the midface heal by direct bony union.  相似文献   

19.
Bone has a capability to repair itself when it is fractured. Repair involves the generation of intermediate tissues, such as fibrous connective tissue, cartilage and woven bone, before final bone healing can occur. The intermediate tissues serve to stabilise the mechanical environment and provide a scaffold for differentiation of new tissues. The repair process is fundamentally affected by mechanical loading and by the geometric configuration of the fracture fragments. Biomechanical analyses of fracture healing have previously computed the stress distribution within the callus and identified the components of the stress tensor favouring or inhibiting differentiation of particular tissue phenotypes. In this paper, a biphasic poroelastic finite element model of a fracture callus is used to simulate the time-course of tissue differentiation during fracture healing. The simulation begins with granulation tissue (post-inflammation phase) and finishes with bone resorption. The biomechanical regulatory model assumes that tissue differentiation is controlled by a combination of shear strain and fluid flow acting within the tissue. High shear strain and fluid flows are assumed to deform the precursor cells stimulating formation of fibrous connective tissue, lower levels stimulate formation of cartilage, and lower again allows ossification. This mechano-regulatory scheme was tested by simulating healing in fractures with different gap sizes and loading magnitudes. The appearance and disappearance of the various tissues found in a callus was similar to histological observation. The effect of gap size and loading magnitude on the rate of reduction of the interfragmentary strain was sufficiently close to confirm the hypothesis that tissue differentiation phenomena could be governed by the proposed mechano-regulation model.  相似文献   

20.
Matrix proteoglycans such as biglycan (Bgn) dominate skeletal tissue and yet its exact role in regulating bone function is still unclear. In this paper we describe the potential role of (Bgn) in the fracture healing process. We hypothesized that Bgn could regulate fracture healing because of previous work showing that it can affect normal bone formation. To test this hypothesis, we created fractures in femurs of 6-week-old male wild type (WT or Bgn+/0) and Bgn-deficient (Bgn-KO or Bgn-/0) mice using a custom-made standardized fracture device, and analyzed the process of healing over time. The formation of a callus around the fracture site was observed at both 7 and 14 days post-fracture in WT and Bgn-deficient mice and immunohistochemistry revealed that Bgn was highly expressed in the fracture callus of WT mice, localizing within woven bone and cartilage. Micro-computed tomography (μCT) analysis of the region surrounding the fracture line showed that the Bgn-deficient mice had a smaller callus than WT mice. Histology of the same region also showed the presence of less cartilage and woven bone in the Bgn-deficient mice compared to WT mice. Picrosirius red staining of the callus visualized under polarized light showed that there was less fibrillar collagen in the Bgn-deficient mice, a finding confirmed by immunohistochemistry using antibodies to type I collagen. Interestingly, real time RT-PCR of the callus at 7 days post-fracture showed a significant decrease in relative vascular endothelial growth factor A (VEGF) gene expression by Bgn-deficient mice as compared to WT. Moreover, VEGF was shown to bind directly to Bgn through a solid-phase binding assay. The inability of Bgn to directly enhance VEGF-induced signaling suggests that Bgn has a unique role in regulating vessel formation, potentially related to VEGF storage or stabilization in the matrix. Taken together, these results suggest that Bgn has a regulatory role in the process of bone formation during fracture healing, and further, that reduced angiogenesis could be the molecular basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号