首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The DNA increment method, designed for measuring the increment in the amount of DNA after inhibition of initiation of fresh rounds of replication initiation was employed to measure the rate of deoxyribonucleic acid (DNA) chain growth in Mycobacterium tuberculosis H37Rv growing in Youman and Karlson's medium at 37°C with a generation time of 24 h and also in relatively fast growing species like Mycobacterium smegmatis and Escherichia coli. From the results obtained, the time required for a DNA replication fork to traverse the chromosome from origin to terminus (C period) was calculated. The chain elongation rates of DNA of the three organisms was determined from the C period and the known genome sizes assuming that all these genomes have a single replication origin and bidirectional replication fork. The rate for M. tuberculosis was 3,200 nucleotides per min about 11 times slower than that of M. smegmatis and about 13–18 times slower than that of E. coli.Abbreviations DNA deoxyribonucleic acid - td delay in initiation - OD optical density - CAM chloramphenicol - RIF rifampicin  相似文献   

2.
Glycogen branching enzyme (GlgB, EC 2.4.1.18) catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and subsequent transfer of cleaved oligosaccharide to form a new alpha-(1,6)-branch. A single glgB gene Rv1326c is present in Mycobacterium tuberculosis. The predicted amino acid sequence of GlgB of M. tuberculosis has all the conserved regions of alpha-amylase family proteins. The overall amino acid identity to other GlgBs ranges from 48.5 to 99%. The glgB gene of M. tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein was purified to homogeneity using metal affinity and ion exchange chromatography. The recombinant protein is a monomer as evidenced by gel filtration chromatography, is active as an enzyme, and uses amylose as the substrate. Enzyme activity was optimal at pH 7.0, 30 degrees C and divalent cations such as Zn2+ and Cu2+ inhibited activity. CD spectroscopy, proteolytic cleavage and mass spectroscopy analyses revealed that cysteine residues of GlgB form structural disulfide bond(s), which allow the protein to exist in two different redox-dependent conformational states. These conformations have different surface hydrophobicities as evidenced by ANS-fluorescence of oxidized and reduced GlgB. Although the conformational change did not affect the branching enzyme activity, the change in surface hydrophobicity could influence the interaction or dissociation of different cellular proteins with GlgB in response to different physiological states.  相似文献   

3.
Phosphoglucose isomerase (PGI) EC 5.3.1.9, is a housekeeping enzyme that catalyzes the reversible isomerization of d-glucopyranose-6-phosphate and d-fructofuranose-6-phosphate. We have previously reported expression and multistep purification of recombinant PGI from Mycobacterium tuberculosis using conventional methods. We now describe an improved and simplified single step approach for purification of functionally active mycobacterial rPGI. The gene encoding PGI from M. tuberculosis H37Rv was cloned in bacterial expression vector pET22b(+). Expression of recombinant PGI with six-histidine-tag protein was observed both in the soluble fraction and inclusion bodies. Approximately 116mg of recombinant enzyme was purified to near homogeneity with approximately 80% yield from the soluble fraction of 1L culture at shake flask level using one step Ni-NTA affinity chromatography. The specific activity of the purified six-histidine-tagged recombinant PGI (rPGI-His(6)) was approximately 800U/mg of protein. The apparent K(m) value of the active recombinant protein followed Michaelis-Menten kinetics and was 0.27+/-0.03mM. K(i) for the competitive inhibitor 6-phosphogluconate was 0.75mM. The enzyme had pH optima in the range of pH 7.6-9.0 and was stable up to 55 degrees C. rPGI-His(6) exhibited enzyme activity almost equal to that of enzyme without histidine tag.  相似文献   

4.
Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents.  相似文献   

5.
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.  相似文献   

6.
Fatty acid synthesis is essential for cell growth and viability. The 3-oxoacyl-acyl carrier protein synthase II (KAS II) from Mycobacterium tuberculosis catalyses initiation of the fatty acid synthesis pathway by condensation of acyl CoA and mycolic acid during the elongation phase. KAS II is a key regulator of bacterial fatty acid synthesis, and a promising target in the search for potent antibacterial drugs. Homology modelling was used to generate the 3-D protein structure using the known crystal structure, and the stereochemical quality of KAS II was validated. Effective drugs were selected that target the active amino acid residues of KAS II. The drugs thiolactomycin, thiophenone and the multidrug cerulenin isoniazed were found to be more potent for inhibition of M. tuberculosis due to the robust binding affinity of their protein–drug interactions. KAS II enzymes of M. tuberculosis and other species of Mycobacterium are conserved, as revealed by their close phylogenetic relationships. This study may provide new insights towards understanding the 3-D structural conformation and active amino acids of KAS II, thus providing rationale for the design of novel antibacterial drugs.  相似文献   

7.
Secreted mycobacterial protein antigens were isolated from the culture filtrate of Mycobacterium tuberculosis H37Rv strain grown in Sauton's medium. These secretory proteins of Mycobacterium tuberculosis culture filtrate (MTCF) were separated by SDS-PAGE. High titre anti-DNA autoantibodies from the sera of systemic lupus erythematosus (SLE) patients showed remarkable binding and specificity towards MTCF proteins in dot blot and solid phase immunoassays. The major immunodominant secretory protein in MTCF, fractionated by Sephadex G-200 chromatography was the antigen 85 complex comprising of 30 and 31 kDa molecular weight components. Binding of SLE anti-DNA autoantibodies to the antigen 85 complex was further confirmed by Western blotting. The results suggest the possible involvement of secretory mycobacterial protein antigens in anti-DNA antibody induction in SLE.  相似文献   

8.
The crystal structure of the enzyme 3-isopropylmalate dehydrogenase (IPMDH) from Mycobacterium tuberculosis (LeuB, Mtb-IPMDH, Rv2995c) without substrate or co-factor was determined at 1.65 A resolution, which is the highest resolution reported for an IPMDH to date. The crystals contain two functional dimers in the asymmetric unit in an arrangement close to a tetramer of D2 symmetry. Despite the absence of a substrate or inhibitor bound to the protein, the structure of the monomer resembles the previously observed closed form of the enzyme more closely than the open form. A comparison with the substrate complex of IPMDH from Thiobacillus ferrooxidans and the co-factor complex of the Thermus thermophilus enzyme revealed a close relationship of the active-site architecture between the various bacterial enzymes. The inhibitor O-isobutenyl oxalylhydroxamate was found to bind to the active site of IPMDH in a mode similar to the substrate isopropylmalate.  相似文献   

9.
About 10% of the coding sequence of Mycobacterium tuberculosis corresponds to hitherto unknown members of the PE and PPE protein families which display significant sequence and length variation at their C-terminal region. It has been suggested that this could possibly represent a rich source of antigenic variation within the pathogen. We describe the purification and biophysical characterization of the recombinant PPE protein coded by hypothetical ORF Rv2430c, a member of the PPE gene family that was earlier shown to induce a strong B cell response. Expression of the recombinant PPE protein in Escherichia coli led to its localization in inclusion bodies and subsequent refolding using dialysis after its extraction from the same resulted in extensive precipitation. Therefore, an on-column refolding strategy was used, after which the protein was found to be in the soluble form. CD spectrum of the recombinant protein displayed predominantly alpha helical content (81%) which matched significantly with in silico and web-based secondary structure predictions. Furthermore, fluorescence emission spectra revealed that aromatic amino acids are buried inside the protein, which are exposed to aqueous environment under 8M urea. These results, for the first time, provide evidence on the structural features of PPE family protein which, viewed with its reported immunodominant characteristics, have implications for other proteins of the PE/PPE family.  相似文献   

10.
Mycobacterium tuberculosis (Mtb) has a highly complex cell wall, which is required for both bacterial survival and infection. Cell wall biosynthesis is dependent on decaprenyl diphosphate as a glyco-carrier, which is hence an essential metabolite in this pathogen. Previous biochemical studies indicated (E)-geranyl diphosphate (GPP) is required for the synthesis of decaprenyl diphosphate. Here we demonstrate that Rv0989c encodes the “missing” GPP synthase, representing the first such enzyme to be characterized from bacteria, and which presumably is involved in decaprenyl diphosphate biosynthesis in Mtb. Our investigation also has revealed previously unrecognized substrate plasticity of the farnesyl diphosphate synthases from Mtb, resolving previous discrepancies between biochemical and genetic studies of cell wall biosynthesis.  相似文献   

11.
Isoniazid, a first-line antibiotic used for the treatment of tuberculosis, is a prodrug that requires activation by the Mycobacterium tuberculosis enzyme KatG. The KatG(S315T) mutation causes isoniazid resistance while the KatG(R463L) variation is thought to be a polymorphism. Much of the work to date focused on isoniazid activation by KatG has utilized recombinant enzyme overexpressed in Escherichia coli. In this work, native KatG and KatG(S315T) were purified from M. tuberculosis, and KatG(R463L) was purified from Mycobacterium bovis. The native molecular weight, enzymatic activity, optical, resonance Raman, and EPR spectra, K(D) for isoniazid binding, and isoniazid oxidation rates were measured and compared for each native enzyme. Further, the properties of the native enzymes were compared and contrasted with those reported for recombinant KatG, KatG(S315T), and KatG(R463L) in order to assess the ability of the recombinant enzymes to act as good models for the native enzymes.  相似文献   

12.
With a view to diagnosing tuberculosis in populations in endemic areas, excretory-secretory antigen fraction(Mtb EST-6) of purifiedMycobacterium tuberculosis H37Ra and affinity purified polyclonal antibodies againstMtb EST were used to detect both antibodies and circulating antigen in the sera of patients and disease-free individuals. Indirect stick penicillinase ELISA system usingMtb EST-6 detected antigen-specific IgG antibody in 84% of sputum positive, 77% of sputum negative pulmonary tuberculosis patients and 7% of healthy and 11% of subjects with nontub~rculosis diseases. Similarly, a sandwich penicillinase ELISA system using affinity purified antiMtb EST antibodies detected circulating antigen in 83% and 61% of sputum positive and negative pulmonary tuberculosis subjects. In contrast only 24% of healthy and 18% of disease controls showed seropositivity. Antibody assay showed higher sensitivity and specificity (83% and 91% respectively) compared to antigen detection (sensitivity of 79% and specificity of 79%). However, by concomitant use of both assays it was possible to enhance the specificity of detection to 98%, though sensitivity was reduced marginally to 70%. The present study confirms the presence of both antigen and specific antibodies in the circulation during clinical disease and draws attention to the utility ofMtb EST-6 as a diagnostic marker of pulmonary tuberculosis.  相似文献   

13.
Tuberculosis (TB) is a major global health threat. There is a need for the development of more efficient drugs for the sterilization of the disease’s causative agent, Mycobacterium tuberculosis (MTB). A more comprehensive understanding of the bacilli’s nucleotide metabolic pathways could aid in the development of new anti-mycobacterial drugs. Here we describe expression and purification of recombinant iunH-encoded nucleoside hydrolase from MTB (MtIAGU-NH). Glutaraldehyde cross-linking results indicate that MtIAGU-NH predominates as a monomer, presenting varied oligomeric states depending upon binding of ligands. Steady-state kinetics results show that MtIAGU-NH has broad substrate specificity, accepting inosine, adenosine, guanosine, and uridine as substrates. Inosine and adenosine displayed positive homotropic cooperativity kinetics, whereas guanosine and uridine displayed hyperbolic saturation curves. Measurements of kinetics of ribose binding to MtIAGU-NH by fluorescence spectroscopy suggest two pre-existing forms of enzyme prior to ligand association. The intracellular concentrations of inosine, uridine, hypoxanthine, and uracil were determined and thermodynamic parameters estimated. Thermodynamic activation parameters (Ea, ΔG#, ΔS#, ΔH#) for MtIAGU-NH-catalyzed chemical reaction are presented. Results from mass spectrometry, isothermal titration calorimetry (ITC), pH-rate profile experiment, multiple sequence alignment, and molecular docking experiments are also presented. These data should contribute to our understanding of the biological role played by MtIAGU-NH.  相似文献   

14.
Mycobacterium tuberculosis survives and persists for prolonged periods within its host in an asymptomatic,latent state and can reactivate years later if the host's immune system weakens. The dormant bacilli synthesize and accumulate triacylglycerol, reputed to be an energy source during latency. Among the phospholipases, phospholipase C plays an important role in the pathogenesis. Mutations in a known phospholipase C, plcC, of M.tuberculosis attenuate its growth during the late phase of infection in mice. Hydrolysis of phospholipids by phospholipase C generates diacylglycerol, a well-known signalling molecule that participates in the activation of extracellular signal-regulated kinases (ERK) through protein kinase C leading to macrophage activation. In the present study, we show that M.tuberculosis possesses an additional cell wall-associated protein, Rv3487c, with phospholipase C activity. The recombinant Rv3487c hydrolyses the substrate phosphatidylcholine and generates diacylglycerol by removing the phosphocholine. Furthermore, Rv3487c is expressed during infection as it exhibits significant humoral immunoreactivity with sera from children with tuberculosis, but not with that from adult patients.  相似文献   

15.
Mycobacterium tuberculosis is the causative agent of the disease, tuberculosis and H37Rv is the most studied clinical strain. We use comparative genome analysis of Mycobacterium tuberculosis H37Rv and human for the identification of potential targets dataset. We used DEG (Database of Essential Genes) to identify essential genes in the H37Rv strain. The analysis shows that 628 of the 3989 genes in Mycobacterium tuberculosis H37Rv were found to be essential of which 324 genes lack similarity to the human genome. Subsequently hypothetical proteins were removed through manual curation. This further resulted in a dataset of 135 proteins with essential function and no homology to human.  相似文献   

16.
The gene encoding the Mycobacterium tuberculosis Rv2536 protein is present in the Mycobacterium tuberculosis complex (as assayed by PCR) and transcribed (as determined by RT-PCR) in M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. bovis BCG, and M. africanum strains. Rabbits immunized with synthetic polymer peptides from this protein produced antibodies specifically recognizing a 25-kDa band in mycobacterial sonicate. U937 and A549 cells were used in binding assays involving 20-amino-acid-long synthetic peptides covering the whole Rv2536 protein sequence. Peptide 11207 (161DVFSAVRADDSPTGEMQVAQY180) presented high specific binding to both types of cells; the binding was saturable and presented nanomolar affinity constants. Cross-linking assays revealed that this peptide specifically binds to 50 kDa U937 cell membrane and 45 kDa A549 cell membrane proteins.  相似文献   

17.
We report here the backbone assignment of Rv1567c, an integral membrane protein from Mycobacterium tuberculosis. The backbone resonance assignments were determined based on triple-resonance experiments with uniformly [13C,15N]-labeled protein in LMPG detergent micelles.  相似文献   

18.
N-[2-Naphthyl]-glycine hydrazide has been shown for the first time as a potent inhibitor of the DNA-dependent RNA polymerase (EC 2.7.7.6) ofMycobacterium tuberculosis H37Rv. At a concentration of 10-9 M, the compound shows maximum inhibition of the enzyme, the inhibition being less at higher concentrations. It is suggested that the novel type of inhibition pattern may be due to hydrophobic interactions occurring between the molecules of the compound at higher concentrations. The finding that there is a shift in the λmax of the compound could also account for this phenomenon. The effect of this compound was also tested on DNA-dependent RNA polymerases from an eukaryotic fungus,Microsporum canis. At a concentration of 10−9 M it inhibits RNA polymerase II (32%) but not RNA polymerasesI andIII  相似文献   

19.
Ability of Mycobacterium tuberculosis to survive under oxidative stress in vivo is an important aspect of pathogenesis. Rv3303c gene from M. tuberculosis encodes an NAD(P)H quinone reductase. These enzymes have been shown to manage oxidative stress in other pathogenic bacteria. We have hypothesized that Rv3303c protein will remove reactive oxygen species released by the host and hence reduce oxidative stress to M. tuberculosis. rv3303c was PCR cloned and the purified recombinant enzyme reduced superoxide generator menadione. Antisense and sense RNA constructs of rv3303c were electroporated in M. tuberculosis H37Rv. The transformants were characterized by difference in expression of specific mRNA and protein. Antisense transformants were markedly reduced in virulence as compared to sense transformants as judged by several parameters such as weight and survival of infected mice, growth in vivo, colonization and histopathology of lungs. In the presence of menadione, the sense transformant was more resistant to killing in vitro than the antisense transformant. It may be concluded that the rv3303c gene contributes to virulence of M. tuberculosis in vivo and this might be mediated in part by increased resistance to reactive oxygen intermediates thereby enhancing intracellular growth and colonization.  相似文献   

20.
Human tuberculosis (TB) is a major cause of morbidity and mortality worldwide, especially in poor and developing countries. Moreover, the emergence of Mycobacterium tuberculosis strains resistant to first- and second-line anti-TB drugs raises the prospect of virtually incurable TB. Enzymes of the purine phosphoribosyltransferase (PRTase) family are components of purine salvage pathway and have been proposed as drug targets for the development of chemotherapeutic agents against infective and parasitic diseases. The PRTase-catalyzed chemical reaction involves the ribophosphorylation in one step of purine bases (adenine, guanine, hypoxanthine, or xanthine) and their analogues to the respective nucleoside 5′-monophosphate and pyrophosphate. Hypoxanthine–guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8) is a purine salvage pathway enzyme that specifically recycles hypoxanthine and guanine from the medium, which are in turn converted to, respectively, IMP and GMP. Here we report cloning, DNA sequencing, expression in Escherichia coli BL21 (DE3) cells, purification to homogeneity, N-terminal amino acid sequencing, mass spectrometry analysis, and determination of apparent steady-state kinetic parameters for an in silico predicted M. tuberculosis HGPRT enzyme. These data represent an initial step towards future functional and structural studies, and provide a solid foundation on which to base M. tuberculosis HGPRT-encoding gene manipulation experiments to demonstrate its role in the biology of the bacillus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号