首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
萝卜细胞质雄性不育恢复基因的RAPD标记   总被引:3,自引:0,他引:3  
以萝卜恢复系9802和不育系9802A配制杂交组合,并以174株个体组成的F2分离群体作为恢复基因的标记群体.以分离群体的不育株和可育株分别建立不育池和恢复池,利用100个RAPD引物对两池间的多态性进行研究.分析表明引物OPC6在两池间扩增出稳定的多态性差异.经连锁分析,证明标记OPC61900与萝卜细胞质雄性不育恢复基因连锁,遗传距离为11.6cM(Centimorgan).这个标记可应用于对育性恢复基因的标记辅助选择.  相似文献   

2.
In this work, we have identified a chimeric pentatricopeptide repeat (PPR)-encoding gene cosegregating with the fertility restorer phenotype for cytoplasmic male sterility (CMS) in radish. We have constructed a CMS-Rf system consisting of sterile line ‘9802A2’, maintainer line ‘9802B2’ and restorer line ‘2007H’. F2 segregating population analysis indicated that male fertility is restored by a single dominant gene in the CMS-Rf system described above. A PPR gene named Rfoc was found in the restorer line ‘2007H’. It cosegregated with the fertility restorer in the F2 segregating population which is composed of 613 fertile plants and 187 sterile plants. The Rfoc gene encodes a predicted protein 687 amino acids in length, comprising 16 PPR domains and with a putative mitochondrial targeting signal. Sequence alignment showed that recombination between the 5′ region of Rfob (EU163282) and the 3′ region of PPR24 (AY285675) resulted in Rfoc, indicating a recent unequal crossing-over event between Rfo and PPR24 loci at a distance of 5.5 kb. The sterile line ‘9802A2’ contains the rfob gene. In the F2 population, Rfoc and rfob were observed to fit a segregation ratio 1:2:1 showing that Rfoc was allelic to Rfo. Previously we have reported that a fertile line ‘2006H’, which carries the recessive rfob gene, is able to restore the male fertility of CMS line ‘9802A1’ (Wang et al. in Theor Appl Genet 117:313–320, 2008). However, here when conducting a cross between the fertile line ‘2006H’ and CMS line ‘9802A2, the resulting plants were male sterile, which shows that sterile line ‘9802A2’ possesses a different nuclear background compared to ‘9802A1’. Based on these results, the genetic model of fertility restoration for radish CMS is also discussed.  相似文献   

3.
We have developed a cytoplasmic male sterile (CMS) line of Brassica juncea through somatic hybridization with Moricandia arvensis and introgressed the fertility restorer gene into B. juncea. This fertility restorer locus is unique in that it is capable of restoring male fertility to two other alloplasmic CMS systems of B. juncea. As a first step toward cloning of this restorer gene we attempted molecular tagging of the Rf locus using the amplified fragment length polymorphism (AFLP) technique. A BC1F1 population segregating for male sterility/fertility was used for tagging using the bulk segregant analysis method. Out of 64 primer combinations tested in the bulks, 5 combinations gave polymorphic amplification patterns. Further testing of these primers in individual plants showed four amplicons associated with the male fertility trait. Polymorphic amplicons were cloned and used for designing SCAR primers. One of the SCAR primers generated amplicons mostly in the fertile plants. Linkage analysis using MAPMAKER showed two AFLP and one SCAR markers linked to the male fertility gene with a map distance ranging from 0.6 to 2.9 cM. All the markers are located on one side of the Rf locus.  相似文献   

4.
5.
 A spontaneously derived fertile plant was recovered from a petaloid cytoplasmic male-sterile (CMS) carrot inbred line. Genetic analysis indicated a single nuclear gene was responsible for the restoration to fertility. Within a family segregating for the nuclear restorer in combination with the sterility-inducing cytoplasm, fertile plants were recovered that could not restore fertility when crossed to sterile genotypes. Genetic analysis indicated cytoplasmic reversion for fertility, and Southern analysis, comparing mtDNA organization of the fertile revertant and its CMS progenitor, identified mitochondrial genome rearrangements. Hybridization of cosmids representing a 108-kb subgenomic circle of the sterile line to DNA of a fertile maintainer and fertile revertant lines indicated a similar mtDNA organization for these genotypes that was distinct from that of the sterile line. Six restriction fragments totalling 43.2 kb were common to the fertile maintainer and revertant and absent in the sterile; other restriction fragments totalling 38.2 kb were present only for the sterile line. Unique fragments of low stoichiometry, two for the fertile maintainer and three for the revertant, distinguished these lines. The reversion to fertility in the sterile line could have resulted from the amplification of a mitochondrial submolar genome highly homologous to that found in the fertile maintainer line. Received: 4 October 1997/Accepted: 12 December 1997  相似文献   

6.
用微卫星标记定位小麦T型CMS的恢复基因   总被引:18,自引:1,他引:17  
以T型细胞质雄性不育系 75 336 9A×恢复系 72 6 9 10的F2 群体作为育性调查和基因定位群体。通过育性分析 ,确定该恢复系含有 2个主效恢复基因 ;结合群分法 ,对恢复基因进行了SSR分子标记定位 ,在 2 30对微卫星引物中 ,微卫星标记Xgwm136和Xgwm5 5 0分别与 2个主效恢复基因连锁。这两个标记与Rf基因之间的遗传距离分别为 6 7cM和 5 1cM ,从而将该恢复基因定位在 1AS、1BS染色体上。  相似文献   

7.
8.
9.
10.
11.
Zygotic and apozygotic progenies of sugar beet exhibit high phenotypic variation with respect to cytoplasmic male sterility (CMS). There are progenies with completely sterile, semisterile, semifertile, and fertile pollen. The proportions of semifertile and fertile plants in zygotic and apozygotic progenies varied from zero to 28% and from zero to 17.8%, respectively. Comparison of the phenotypic distributions in zygotic and apozygotic progenies did not reveal significant differences in the CMS expression, although the latter is determined by the maternal S-plasmotype and both maternal and paternal (pollinator) genotypes in zygotic progenies and only by the maternal S-plasmotype and genotype in apozygotic progenies. It has been hypothesized that the instability of the CMS expression in apozygotic progenies is determined by epigenetic variation in the activities of the genes that control the maintenance of the pollen-grain sterility. Inactivated dominant alleles Rf1(0) and Rf2(0) in homozygous state may function as sterility maintenance genes, whereas activation of these alleles during ontogeny results in a partial or complete restoration of pollen-grain fertility. It was demonstrated that pollen fertility of mother plants with S cytoplasm did not affect the CMS expression in two sib progenies. Conversely, in two other progenies, the proportion of fertile plants was significantly higher in the sib progenies of mother plants with fertile pollen and S cytoplasm (inheritance of epigenetic variation).  相似文献   

12.
13.
Cytoplasmic Sterility Factors in VICIA FABA L   总被引:2,自引:0,他引:2       下载免费PDF全文
Tissues of cytoplasmic male sterile, maintainer, restorer, and restored lines, and sterile plants which reverted to fertility in Vicia faba were examined in ultrathin sections. Cytoplasmic spherical bodies (CSB), ca. 70 nm in diameter, were observed in tissues of all sterile plants but not in tissues of maintainer, restorer or restored sterile plants. No CSB were observed in a reverted fertile branch of a tiller-sterile plant, nor in 5 of 6 reverted fertile plants. One reverted fertile plant contained CSB in ovules. It is proposed that the CSB are the sites of, or possibly, products of, sterility factors in Vicia faba.  相似文献   

14.
We are pursuing a positional cloning strategy to isolate the fertility restoration gene Rfk1 from radish. Random polymorphic DNA-sequence-tagged site (RAPD-STS) markers tightly linked to the gene in radish were isolated, and a RAPD map surrounding the Rfk1 locus was constructed. We surveyed 948 F2 plants with adjacent RAPD-STS markers to isolate recombinants for bulk segregant analysis. This analysis was effective in isolating tightly linked amplification fragment length polymorphism (AFLP) markers surrounding the gene of interest. Ten tightly linked AFLP markers were obtained and used to construct a high-resolution map of the region. The closest AFLP-STS markers flanking Rfk1 were 0.1 cM and 0.2 cM away. Using the four adjacent AFLP markers, we screened lambda and cosmid libraries. The lambda and cosmid clones were aligned by examination of end sequences and restriction fragment length polymorphism (RFLP) patterns for each clone, and by hybridization to the DNA isolated from recombinants. Finally, we constructed a 198-kb contig encompassing the Rfk1 gene and comprising 20 lambda and two cosmid clones. By analysis of the breakpoints in recombinants with the rfk1/rfk1 or Rfk1/- genotype, the Rfk1 locus could be assigned to a 43-kb region comprising four lambda clones and one cosmid clone. This pinpoint localization in the radish genome has made it possible for us to identify the gene by sequence analysis and genetic transformation of cytoplasmic male-sterile Brassica napus plants.  相似文献   

15.
比较了(光敏s/正常品种)F_1及F_2为供体亲本,对在花药培养时所获得的花粉植株中不育个体/全部花粉植株之比例的影响。结果表明,以F_1为供体亲本,在所获得的二倍体花粉植株(A_1)中,不育株(长日下)约占20%左右;而从F_2分离的不育株为供体亲本,相应的比例为90%左右。对获得不育的花粉植株而言,供体亲本经过F_2的选择,在花粉一代中可以提高育种效率3—4倍。指出,以培育光敏感雄性不育系为目的的花药培养,与一般育种之花药培养采用杂种F_1为供体亲本不同,不仅应对杂种F_2代在长日照条件下进行不育株的选择,而且应在短日照下对这种不育株作育性转换的双重选择。以这种个体作为花药培养的供体亲本,可以大大提高育种效率。 在长日照下表现不育的花粉植株的育性转换具多样性。来自同一组合的不育花粉植株在晚造(短日照)条件下,其花粉有的染色,频率高且稳定;有的虽然可变为染色,但频率不高或不稳定或二者兼有;有些却一直不为Ⅰ-KⅠ染色,或即使染色频率也在10%以下。这一结果与收集全国各地15个光敏核不育系在本昕同期种值条件下的反应十分吻合。这说明通过花药培养,从特定的组合培育出所需要的光敏/光温互作或温敏型的核不育系的可能性是存在的。  相似文献   

16.
Hydroxycinnamic acid (HCA) amides in fertile and cytoplasmic male sterile lines of maize were determined in reproductive organs, developing grains and cobs. HCA amides occurred in large amounts in the anthers of fertile plants (line F7N) and were absent from the anthers of cytoplasmic male sterile lines (lines F7T and F7C). Restoration of fertility was associated with the production of these compounds (line FC31). Considerable variations were observed in the concentrations of HCA amides at different stages of growth and grain maturation. Changes of HCA amides in the grains which were to produce sterile plants followed a pattern similar to that obtained with the grains which were to produce fertile plants. Accumulation of HCA amides was substantially higher in fertile lines whatever their genotype (F7N, FC31 and F7T x FC31) than in sterile lines. Marked changes occurred in the HCA amide content of embryo and endosperm during grain development. Many changes in HCA amides were observed in cobs during development and maturation, but no substantial differences could be observed between fertile and sterile lines.  相似文献   

17.
A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥5 seeds/spike and 22 produced ≤4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ2 value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.  相似文献   

18.
Cytoplasmic male sterility (CMS) of rice (Oryza sativa L.) was first reported using the cytoplasm of a Chinese wild rice, Oryza rufipogon Griff. strain W1. However, it was not possible to characterize this ms-CW-type CMS in more detail until a restorer line had been developed due to the lack of restorer genes among cultivars thus far tested. The breeding of a restorer line (W1-R) was eventually achieved by transferring the restorer gene(s) of W1 to a cultivar. We report here the characterization of the ms-CW pollen grains and mapping of the restorer gene for ms-CW-type CMS. Pollen grains of the male-sterile plants appeared to be normal and viable based on the fluorochromatic reaction test, but they did not germinate on normal stigmas. The 1:1 segregation of fertile and sterile plants in a BC1F1 population from a cross between W1-R and a maintainer line demonstrated that fertility restoration is controlled by a single gene. The fertile seed set of all the F2 plants examined indicated that the fertility restoration functions gametophytically. We designated the fertility restorer gene Rfcw. Using cleaved amplified polymorphic sequence (CAPS) and simple sequence repeat (SSR) markers, we localized Rfcw to chromosome 4 with a genetic distance of 0.6 cM from the nearest SSR marker.  相似文献   

19.
In many gynodioecious species the nuclear inheritance of male fertility is complex and involves multiple (restorer) genes. In addition to restoring plants from the female (male sterile) to the hermaphrodite (male fertile) state, these genes are also thought to play a role in the determination of the quantity of pollen produced by hermaphrodites. The more restorer alleles a hermaphroditic plant possesses, the higher the pollen production. To test this hypothesis I combined the results of crossing studies of the genetics of male sterility with phenotypic data on investment in stamens and ovules among the progeny of plants involved in these studies. The sex ratio (i.e. the frequency of hermaphrodites among the progeny), being a measure of the number of restorer alleles of the maternal plant, was positively related to the investment in pollen (male function), but negatively related to the investment in ovules (female function), in both field and greenhouse experiments. Consequently, a negative correlation between male and female function was observed (trade-off) and it is suggested that antagonistic pleiotropic effects of restorer genes might be the cause. Phenotypic gender, a measure combining investment in both pollen and ovules, was highly repeatable between field and greenhouse, indicating genetic determination of a more male- or female-biased allocation pattern among the studied plants.  相似文献   

20.
A novel genic male sterile (GMS) line in Brassica napus L., which was identified in 1999, was found to be controlled by a monogenic dominant gene, which we have designated as MDGMS. The microspores of the MDGMS abort before the degradation of the tapetal cell layer. The F1 fertility from any fertile lines crossed with MDGMS segregated and the ratio was close to 1:1. Bulked segregation analysis (BSA) was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the Ms gene in MDGMS. Among 880 random 10-mer oligonucleotide primers screened against the bulk DNA of sterile and fertile, one primer S243 (5′-CTATGCCGAC-3′) gave a repeatable 1500-bp DNA polymorphic segment S2431500 between the two bulks. Analysis of individual plants of each bulks and other types of GMS and cytoplasmic male sterility (CMS) lines suggest that the RAPD marker S2431500 is closely linked to the MDGMS locus in rapeseed. This RAPD marker has been converted into sequence characterized amplified region (SCAR) marker to aid identification of male-fertility genotypes in segregating progenies of MDGMS in marker-assisted selection (MAS) breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号