首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Seravalli J  Ragsdale SW 《Biochemistry》2000,39(6):1274-1277
Carbon monoxide is an intermediate in carbon dioxide fixation by diverse microbes that inhabit anaerobic environments including the human colon. These organisms fix CO(2) by the Wood-Ljungdahl pathway of acetyl-CoA biosynthesis. The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) catalyzes several key steps in this pathway. CO(2) is reduced to CO at a nickel iron-sulfur cluster called cluster C located in the CODH subunit. Then, CO is condensed with a methyl group and coenzyme A at cluster A, another nickel iron-sulfur cluster in the ACS subunit. Spectroscopic studies indicate that clusters A and C are at least 10-15 A apart. To gain a better understanding of how CO production and utilization are coordinated, we have studied an isotopic exchange reaction between labeled CO(2) and the carbonyl group of acetyl-CoA with the CODH/ACS from Clostridium thermoaceticum. When solution CO is provided at saturating levels, only CO(2)-derived CO is incorporated into the carbonyl group of acetyl-CoA. Furthermore, when high levels of hemoglobin or myoglobin are added to remove CO from solution, there is only partial inhibition of the incorporation of CO(2)-derived CO into acetyl-CoA. These results provide strong evidence for the existence of a CO channel between cluster C in the CODH subunit and cluster A in the ACS subunit. The existence of such a channel would tightly couple CO production and utilization and help explain why high levels of this toxic gas do not escape into the environment. Instead, microbes sequester this energy-rich carbon source for metabolic reactions.  相似文献   

3.
The present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood-Ljungdahl pathway, which involves the conversion of CO or H2/CO2 into acetyl-CoA, which then serves as a source of ATP and cell carbon. The focus is on two enzymes that make and utilize CO, CODH (carbon monoxide dehydrogenase) and ACS (acetyl-CoA synthase). In this pathway, CODH converts CO2 into CO and ACS generates acetyl-CoA in a reaction involving Ni·CO, methyl-Ni and acetyl-Ni as catalytic intermediates. A 70 ? (1 ?=0.1?nm) channel guides CO, generated at the active site of CODH, to a CO 'cage' near the ACS active site to sequester this reactive species and assure its rapid availability to participate in a kinetically coupled reaction with an unstable Ni(I) state that was recently trapped by photolytic, rapid kinetic and spectroscopic studies. The present paper also describes studies of two haem-regulated systems that involve a principle of metabolic regulation interlinking redox, haem and CO. Recent studies with HO2 (haem oxygenase-2), a K+ ion channel (the BK channel) and a nuclear receptor (Rev-Erb) demonstrate that this mode of regulation involves a thiol-disulfide redox switch that regulates haem binding and that gas signalling molecules (CO and NO) modulate the effect of haem.  相似文献   

4.
The carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) from Methanosarcina thermophila is part of a five-subunit complex consisting of alpha, beta, gamma, delta, and epsilon subunits. The multienzyme complex catalyzes the reversible oxidation of CO to CO(2), transfer of the methyl group of acetyl-CoA to tetrahydromethanopterin (H(4)MPT), and acetyl-CoA synthesis from CO, CoA, and methyl-H(4)MPT. The alpha and epsilon subunits are required for CO oxidation. The gamma and delta subunits constitute a corrinoid iron-sulfur protein that is involved in the transmethylation reaction. This work focuses on the beta subunit. The isolated beta subunit contains significant amounts of nickel. When proteases truncate the beta subunit, causing the CODH/ACS complex to dissociate, the amount of intact beta subunit correlates directly with the EPR signal intensity of Cluster A and the activity of the CO/acetyl-CoA exchange reaction. Our results strongly indicate that the beta subunit harbors Cluster A, a NiFeS cluster, that is the active site of acetyl-CoA cleavage and assembly. Although the beta subunit is necessary, it is not sufficient for acetyl-CoA synthesis; interactions between the CODH and the ACS subunits are required for cleavage or synthesis of the C-C bond of acetyl-CoA. We propose that these interactions include intramolecular electron transfer reactions between the CODH and ACS subunits.  相似文献   

5.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a bifunctional enzyme that catalyzes the reversible reduction of carbon dioxide into carbon monoxide and the coupled synthesis of acetyl-CoA from the carbon monoxide produced. Exposure of CODH/ACS from Moorella thermoacetica to carbon monoxide gives rise to several infrared bands in the 2100-1900 cm(-1) spectral region that are attributed to the formation of metal-coordinated carbon monoxide species. Infrared bands attributable to M-CO are not detected in the as-isolated enzyme, suggesting that the enzyme does not contain intrinsic metal-coordinated CO ligands. A band detected at 1996 cm(-1) in the CO-flushed enzyme is assigned as arising from CO binding to a metal center in cluster A of the ACS subunit. The frequency of this band is most consistent with it arising from a terminally coordinated Ni(I) carbonyl. Multiple infrared bands at 2078, 2044, 1970, 1959, and 1901 cm(-1) are attributed to CO binding at cluster C of the CODH subunit. All infrared bands attributed to metal carbonyls decay in a time-dependent fashion as CO(2) appears in the solution. These observations are consistent with the enzyme-catalyzed oxidation of carbon monoxide until it is completely depleted from solution during the course of the experiments.  相似文献   

6.
CO dehydrogenase/acetyl-CoA synthase (CODH/ACS), a key enzyme in the Wood-Ljungdahl pathway of anaerobic CO(2) fixation, is a bifunctional enzyme containing CODH, which catalyzes the reversible two-electron oxidation of CO to CO(2), and ACS, which catalyzes acetyl-CoA synthesis from CoA, CO, and a methylated corrinoid iron-sulfur protein (CFeSP). ACS contains an active site nickel iron-sulfur cluster that forms a paramagnetic adduct with CO, called the nickel iron carbon (NiFeC) species, which we have hypothesized to be a key intermediate in acetyl-CoA synthesis. This hypothesis has been controversial. Here we report the results of steady-state kinetic experiments; stopped-flow and rapid freeze-quench transient kinetic studies; and kinetic simulations that directly test this hypothesis. Our results show that formation of the NiFeC intermediate occurs at approximately the same rate as, and its decay occurs 6-fold faster than, the rate of acetyl-CoA synthesis. Kinetic simulations of the steady-state and transient kinetic results accommodate the NiFeC species in the mechanism and define the rate constants for the elementary steps in acetyl-CoA synthesis. The combined results strongly support the kinetic competence of the NiFeC species in the Wood-Ljungdahl pathway. The results also imply that the methylation of ACS occurs by attack of the Ni(1+) site in the NiFeC intermediate on the methyl group of the methylated CFeSP. Our results indicate that CO inhibits acetyl-CoA synthesis by inhibiting this methyl transfer reaction. Under noninhibitory CO concentrations (below 100 microM), formation of the NiFeC species is rate-limiting, while at higher inhibitory CO concentrations, methyl transfer to ACS becomes rate-limiting.  相似文献   

7.
Conversion of acetate to methane (aceticlastic methanogenesis) is an ecologically important process carried out exclusively by methanogenic archaea. An important enzyme for this process as well as for methanogenic growth on carbon monoxide is the five-subunit archaeal CO dehydrogenase/acetyl coenzyme A (CoA) synthase multienzyme complex (CODH/ACS) catalyzing both CO oxidation/CO(2) reduction and cleavage/synthesis of acetyl-CoA. Methanosarcina acetivorans C2A contains two very similar copies of a six-gene operon (cdh genes) encoding two isoforms of CODH/ACS (Cdh1 and Cdh2) and a single CdhA subunit, CdhA3. To address the role of the CODH/ACS system in M. acetivorans, mutational as well as promoter/reporter gene fusion analyses were conducted. Phenotypic characterization of cdh disruption mutants (three single and double mutants, as well as the triple mutant) revealed a strict requirement of either Cdh1 or Cdh2 for acetotrophic or carboxidotrophic growth, as well as for autotrophy, which demonstrated that both isoforms are bona fide CODH/ACS. While expression of the Cdh2-encoding genes was generally higher than that of genes encoding Cdh1, both appeared to be regulated differentially in response to growth phase and to changing substrate conditions. While dispensable for growth, CdhA3 clearly affected expression of cdh1, suggesting that it functions in signal perception and transduction rather than in catabolism. The data obtained argue for a functional hierarchy and regulatory cross talk of the CODH/ACS isoforms.  相似文献   

8.
Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe4S4] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe4S4] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.Abbreviations CFeSP corrinoid iron-sulfur protein - CH3H4folate methyltetrahydrofolate - CODH/ACS carbon monoxide dehydrogenase/acetyl-CoA synthases - ENDOR electron nuclear double resonance - MeTr methyltransferase  相似文献   

9.
Acetyl-CoA synthase (ACS ACS/CODH CODH/ACS) from Moorella thermoacetica catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group of a corrinoid-iron-sulfur protein (CoFeSP). A time lag prior to the onset of acetyl-CoA production, varying from 4 to 20 min, was observed in assay solutions lacking the low-potential electron-transfer agent methyl viologen (MV). No lag was observed when MV was included in the assay. The length of the lag depended on the concentrations of CO and ACS, with shorter lags found for higher [ACS] and sub-saturating [CO]. Lag length also depended on CoFeSP. Rate profiles of acetyl-CoA synthesis, including the lag phase, were numerically simulated assuming an autocatalytic mechanism. A similar reaction profile was monitored by UV-vis spectrophotometry, allowing the redox status of the CoFeSP to be evaluated during this process. At early stages in the lag phase, Co2+FeSP reduced to Co+FeSP, and this was rapidly methylated to afford CH3-Co3+FeSP. During steady-state synthesis of acetyl-CoA, CoFeSP was predominately in the CH3-Co3+FeSP state. As the synthesis rate declined and eventually ceased, the Co+FeSP state predominated. Three activation reductive reactions may be involved, including reduction of the A- and C-clusters within ACS and the reduction of the cobamide of CoFeSP. The B-, C-, and D-clusters in the subunit appear to be electronically isolated from the A-cluster in the connected subunit, consistent with the ~70 Å distance separating these clusters, suggesting the need for an in vivo reductant that activates ACS and/or CoFeSP.Abbreviations ACS acetyl-CoA synthase, also known as CODH (carbon monoxide dehydrogenase) or CODH/ACS or ACS/CODH - CH3-Co3+FeSP, Co2+FeSP, and Co+FeSP corrinoid-iron-sulfur protein with the cobalamin in the methylated 3+, unmethylated 2+, and unmethylated 1+ states - CoA coenzyme A - DTT dithiothreitol - H-THF or THF tetrahydrofolic acid or tetrahydrofolate - MT methyl transferase - MV methyl viologen  相似文献   

10.
 CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) is one of the four known nickel enzymes. It is a bifunctional protein that catalyzes the oxidation of CO to CO2 at a nickel iron-sulfur cluster (Cluster C) and a remarkable condensation reaction between a methyl group (donated from a methylated corrinoid iron-sulfur protein), carbon monoxide, and coenzyme A to form acetyl-CoA at a separate nickel iron-sulfur cluster (Cluster A). This review focuses on the current understanding of the structure and function of Cluster A and on related model chemistry. It describes studies that uncovered the first example of a biological organometallic reaction sequence. The mechanism of acetyl-CoA synthesis includes enzymebound methylnickel, iron-carbonyl, and acylmetal intermediates. Discovery of the methylnickel species constituted the first example of an alkylnickel species in biology and unveiled a new biological role for nickel. Received: 10 April 1996 / Accepted: 4 July 1996  相似文献   

11.
Methanosarcina acetivorans, a member of the methanogenic archaea, can grow with carbon monoxide (CO) as the sole energy source and generates, unlike other methanogens, substantial amounts of acetate and formate in addition to methane. Phenotypic analyses of mutant strains lacking the cooS1F operon and the cooS2 gene suggest that the monofunctional carbon monoxide dehydrogenase (CODH) system contributes to, but is not required for, carboxidotrophic growth of M. acetivorans. Further, qualitative proteomic analyses confirm a recent report (Lessner et al., Proc Natl Acad Sci USA, 103:17921–17926, 2006) in showing that the bifunctional CODH/acetyl-CoA synthase (ACS) system, two enzymes involved in CO2-reduction, and a peculiar protein homologous to both corrinoid proteins and methyltransferases are synthesized at elevated levels in response to CO; however, the finding that the latter protein is also abundant when trimethylamine serves as growth substrate questions its proposed involvement in the reduction of methyl-groups to methane. Potential catabolic mechanisms and metabolic adaptations employed by M. acetivorans to effectively utilize CO are discussed.  相似文献   

12.
A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.  相似文献   

13.
Many anaerobic bacteria fix CO2 via the Wood pathway of acetyl-CoA synthesis. Carbon monoxide dehydrogenase (CODH), also called acetyl-CoA synthase, accepts the methyl group from the methylated corrinoid/iron-sulfur protein (C/Fe-SP), binds a carbonyl group from CO, CO2, or the carboxyl of pyruvate, and binds coenzyme A. Then CODH catalyzes the synthesis of acetyl-CoA from these enzyme-bound groups. Here, we have characterized the methyl transfer steps involved in acetyl-CoA synthesis. We have studied the reactions leading to methylation of CODH by methyl iodide and shown an absolute requirement of the C/Fe-SP in this reaction. In addition, we have discovered and partly characterized two previously unknown exchange reactions catalyzed by CODH: between the methylated C/Fe-SP and methylated CODH and between methylated CODH and the methyl moiety of acetyl-CoA. We have performed these two exchange reactions, methylation of the C/Fe-SP, and methylation of CODH at controlled potentials. The rates of all these reactions except the exchange between methylated C/Fe-SP and methylated CODH are accelerated (from 1 to 2 orders of magnitude) when run at low potentials. Our results provide strong evidence for a nucleophilic redox-active metal center on CODH as the initial acceptor of the methyl group from the methylated C/Fe-SP. This metal center also is proposed to be involved in the cleavage of acetyl-CoA in the reverse reaction.  相似文献   

14.
The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs 5.5 and 8.0. The rate of acetyl-CoA synthesis was independent of CoA concentrations between 20 microM and 1 mM; however, activity was inhibited 50% with 5 mM CoA. Methylcobalamin did not substitute for CH3I in acetyl-CoA synthesis; no acetyl-CoA or propionyl coenzyme A was detected when sodium acetate or CH3CH2I replaced CH3I in the assay mixture. CO could be replaced with CO2 and titanium(III) citrate. When CO2 and 14CO were present in the assay, the specific activity of the acetyl-CoA synthesized was 87% of the specific activity of 14CO, indicating that CO was preferentially incorporated into acetyl-CoA without prior oxidation to free CO2. Greater than 100 microM potassium cyanide was required to significantly inhibit acetyl-CoA synthesis, and 500 microM was required for 50% inhibition; in contrast, oxidation of CO by the CODH complex was inhibited 50% by approximately 10 microM potassium cyanide.  相似文献   

15.
Bender G  Ragsdale SW 《Biochemistry》2011,50(2):276-286
Acetyl-CoA synthase (ACS), a subunit of the bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex of Moorella thermoacetica requires reductive activation in order to catalyze acetyl-CoA synthesis and related partial reactions, including the CO/[1-(14)C]-acetyl-CoA exchange reaction. We show that the M. thermoacetica ferredoxin(II) (Fd-II), which harbors two [4Fe-4S] clusters and is an electron acceptor for CODH, serves as a redox activator of ACS. The level of activation depends on the oxidation states of both ACS and Fd-II, which strongly suggests that Fd-II acts as a reducing agent. By the use of controlled potential enzymology, the midpoint reduction potential for the catalytic one-electron redox-active species in the CO/acetyl-CoA exchange reaction is -511 mV, which is similar to the midpoint reduction potential that was earlier measured for other reactions involving ACS. Incubation of ACS with Fd-II and CO leads to the formation of the NiFeC species, which also supports the role of Fd-II as a reductant for ACS. In addition to being a reductant, Fd-II can accept electrons from acetylated ACS, as observed by the increased intensity of the EPR spectrum of reduced Fd-II, indicating that there is a stored electron within an "electron shuttle" in the acetyl-Ni(II) form of ACS. This "shuttle" is proposed to serve as a redox mediator during activation and at different steps of the ACS catalytic cycle.  相似文献   

16.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   

17.
After activation with NiCl2, the recombinant alpha subunit of the Ni-containing alpha2beta2 acetyl-CoA synthase/carbon monoxide dehydrogenase (ACS/CODH) catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group donated from the corrinoid-iron-sulfur protein (CoFeSP). The alpha subunit has two conformations (open and closed), and contains a novel [Fe4S4]-[Nip Nid] active site in which the proximal Nip ion is labile. Prior to Ni activation, recombinant apo-alpha contain only an Fe4S4 cluster. Ni-activated alpha subunits exhibit catalytic, spectroscopic and heterogeneity properties typical of alpha subunits contained in ACS/CODH. Evidence presented here indicates that apo-alpha is a monomer whereas Ni-treated alpha oligomerizes, forming dimers and higher molecular weight species including tetramers. No oligomerization occurred when apo-alpha was treated with Cu(II), Zn(II), or Co(II) ions, but oligomerization occurred when apo-alpha was treated with Pt(II) and Pd(II) ions. The dimer accepted only 0.5 methyl group/alpha and exhibited, upon treatment with CO and under reducing conditions, the NiFeC EPR signal quantifying to 0.4 spin/alpha. Dimers appear to consist of two types of alpha subunits, including one responsible for catalytic activity and one that provides a structural scaffold. Higher molecular weight species may be similarly constituted. It is concluded that Ni binding to the A-cluster induces a conformational change in the alpha subunit, possibly to the open conformation, that promotes oligomerization. These interrelated events demonstrate previously unrealized connections between (a) the conformation of the alpha subunit; (b) the metal which occupies the proximal/distal sites of the A-cluster; and (c) catalytic activity.  相似文献   

18.
Acetylcoenzyme A synthase/carbon monoxide dehydrogenase (ACS/CODH) contains two Ni–Fe–S active-site clusters (called A and C) connected by a tunnel through which CO and CO2 migrate. Site-directed mutants A578C, L215F, and A219F were designed to block the tunnel at different points along the region between the two C-clusters. Two other mutant proteins F70W and N101Q were designed to block the region that connects the tunnel at the ββ interface with a water channel also located at that interface. Purified mutant proteins were assayed for Ni/Fe content and examined by electron paramagnetic resonance spectroscopy. Analyses indicate that same metal clusters found in wild-type (WT) ACS/CODH (i.e., the A-, B-, C-, and probably D-clusters) are properly assembled in the mutant enzymes. Stopped-flow kinetics revealed that these centers in the mutants are rapidly reducible by dithionite but are only slowly reducible by CO, suggesting an impaired ability of CO to migrate through the tunnel to the C-cluster. Relative to the WT enzyme, mutant proteins exhibited little CODH or ACS activity (using CO2 as a substrate). Some ACS activity was observed when CO was a substrate, but not the cooperative CO inhibition effect characteristic of WT ACS/CODH. These results suggest that CO and CO2 enter and exit the enzyme at the water channel along the ββ subunit interface. They also suggest two pathways for CO during synthesis of acetylcoenzyme A, including one in which CO enters the enzyme and migrates through the tunnel before binding at the A-cluster, and another in which CO binds the A-cluster directly from the solvent.  相似文献   

19.
Acetyl coenzyme A synthase (ACS) acts in concert with carbon monoxide dehydrogenase (CODH) to catalyze the formation of acetyl-coenzyme A from CO2-derived CO and CH3+ molecules. Recent crystal structures have shown that the three globular domains constituting the ACS subunit may be arranged in either a closed or an open conformation. A long hydrophobic tunnel network allows diffusion of CO between the CODH and the ACS active sites in the closed form, but it is blocked in the open form. On the other hand, the active site of ACS is only accessible for coenzyme A and the methyl donating protein in the open domain conformation. Although several metal compositions have been observed for this active site, present consensus is that it consists of a Ni-Ni-[Fe4S4] cluster. The observed conformational changes of ACS and the resulting different substrate accessibilities of the catalytic central nickel are reviewed here in the context of a putative CO2/CO tunnel gating mechanism.  相似文献   

20.
Many anaerobic bacteria fix CO2 via the acetyl-coenzyme A (CoA) (Wood) pathway. Carbon monoxide dehydrogenase (CODH), a corrinoid/iron-sulfur protein (C/Fe-SP), methyltransferase (MeTr), and an electron transfer protein such as ferredoxin II play pivotal roles in the conversion of methyltetrahydrofolate (CH3-H4folate), CO, and CoA to acetyl-CoA. In the study reported here, our goals were (i) to optimize the method for determining the activity of the synthesis of acetyl-CoA, (ii) to evaluate how closely the rate of synthesis of acetyl-CoA by purified enzymes approaches the rate at which whole cells synthesize acetate, and (iii) to determine which steps limit the rate of acetyl-CoA synthesis. In this study, CODH, MeTr, C/Fe-SP, and ferredoxin were purified from Clostridium thermoaceticum to apparent homogeneity. We optimized conditions for studying the synthesis of acetyl-CoA and found that when the reaction is dependent upon MeTr, the rate is 5.3 mumol min-1 mg-1 of MeTr. This rate is approximately 10-fold higher than that reported previously and is as fast as that predicted on the basis of the rate of in vivo acetate synthesis. When the reaction is dependent upon CODH, the rate of acetyl-CoA synthesis is approximately 0.82 mumol min-1 mg-1, approximately 10-fold higher than that observed previously; however, it is still lower than the rate of in vivo acetate synthesis. It appears that at least two steps in the overall synthesis of acetyl-CoA from CH3-H4folate, CO, and CoA can be partially rate limiting. At optimal conditions of low pH (approximately 5.8) and low ionic strength, the rate-limiting step involves methylation of CODH by the methylated C/Fe-SP. At higher pH values and/or higher ionic strength, transfer of the methyl group of CH3-H4folate to the C/Fe-SP becomes rate limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号