首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acidifying effect of PtII on nucleobase –NH and –NH2 groups depends both on the site of metal coordination and on the efficiency of stabilization of the deprotonated nucleobase via intracomplex hydrogen bonding. Weakly acidic nucleobase protons with pK a values between 9 and 17 can be acidified by a single PtII to have pK a values which are well within the physiological pH range. This could open the possibility of an acid–base catalysis occurring at pH 7, with the metal–nucleobase entity functioning either as an acid or a base. Examples of PtII complexes studied here include, among others, mixed nucleobase systems of 1-methylcytosine and 1,9-dimethyladenine as well as a complex of the rare iminooxo tautomer of 1-methylcytosine having the metal bonded at N4.  相似文献   

2.
Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion.  相似文献   

3.
Improvement of enzyme function by engineering pH dependence of enzymatic activity is of importance for industrial application of Bacillus circulans xylanases. Target mutation sites were selected by structural alignment between B. circulans xylanase and other xylanases having different pH optima. We selected non-conserved mutant sites within 8 Å from the catalytic residues, to see whether these residues have some role in modulating pKas of the catalytic residues. We hypothesized that the non-conserved residues which may not have any role in enzyme catalysis might perturb pKas of the catalytic residues. Change in pKa of a titratable group due to change in electrostatic potential of a mutation was calculated and the change in pH optimum was predicted from the change in pKa of the catalytic residues. Our strategy is proved to be useful in selection of promising mutants to shift the pH optimum of the xylanases towards desired side.  相似文献   

4.
The nmr titration curves of chemical shifts versus pH were observed for the protons of various histidine-containing di- and tripeptides. With these results, the macroscopic pKa values and the chemical shifts intrinsic to each ionic species were determined by a computer curve-fitting based on a simple acid dissociation sequence. The pKa value of the imidazole ring in N-acetyl-L -histidine methylamide was assumed to represent the intrinsic (or unperturbed) pKa of the imidazole rings of histidine having peptide linkages at both the CO and NH sides. The pKa values of the imidazole rings observed for most di- and tripeptides were reasonably reproduced by simple calculations using the intrinsic value and the perturbations due to the CO2? and NH3+ groups located at various positions. Some other factors affecting the pKa value of the imidazole ring are also discussed.  相似文献   

5.
 A soluble monoheme c–type cytochrome c 6 has been isolated from the cyanobacterium Anabaena PCC 7119. It is a basic protein, with a molecular mass of 9.7 kDa, which accepts electrons from Anabaena ferredoxin in the ferredoxin-NADP+reductase-dependent NADPH cytochrome c reductase activity assay. The turnover of the reaction has an optimum pH at 7.5. Flavodoxin can also replace ferredoxin in this assay, but with only 20% efficiency. Plastocyanin from Anabaena PCC 7119, as well as the c 6 cytochromes from the green algae Chlorella fusca and Monoraphidium braunii are also shown to accept electrons from Anabaena ferredoxin. The reduction potential of cytochrome c 6 at pH 6.7 was determined to be 338 mV and is pH dependent, with pK a ox=8.4±0.1 and pK a red≈9.5. The ferric and ferrous cytochrome forms and their pH equilibria have been studied using visible, EPR and 1H-NMR spectroscopies. The amino acid sequence and the visible and NMR spectroscopic data indicate that the heme iron has a methionine-histidine axial coordination in the pH range 5–11. However, the EPR data for the ferricytochrome are complex and show that in this pH range five distinct forms are present. Between pH 5 and 9 the spectrum is dominated by two rhombic species, with g–values at 2.94, 2.29, 1.43 and at 2.84, 2.34, 1.56, which interconvert with a pK a of 8.4. The NMR data also show a main interconversion between two cytochrome forms at this pH, which coincides with that determined from the pH dependence of the reduction potential. Both these forms were associated with a methionine-histidine heme-iron coordination by correlation with the visible and NMR spectral data, although having crystal field parameters atypical for this type of coordination. Anabaena cytochrome c 6 is one more example of a heme protein for which the widely used crystal field analysis of the EPR data (truth diagram) fails to unequivocally determine the type of heme-iron ligation. Received: 17 May 1996 / Accepted: 13 January 1997  相似文献   

6.
Proton binding equilibria (pKa values) of ionizable groups in proteins are exquisitely sensitive to their microenvironments. Apparent pKa values measured for individual ionizable residues with NMR spectroscopy are actually population‐weighted averages of the pKa in different conformational microstates. NMR spectroscopy experiments with staphylococcal nuclease were used to test the hypothesis that pKa values of surface Glu and Asp residues are affected by pH‐sensitive fluctuations of the backbone between folded and locally unfolded conformations. 15N spin relaxation studies showed that as the pH decreases from the neutral into the acidic range the amplitudes of backbone fluctuations in the ps‐ns timescale increase near carboxylic residues. Hydrogen exchange experiments suggested that backbone conformational fluctuations promoted by decreasing pH also reflect slower local or sub‐global unfolding near carboxylic groups. This study has implications for structure‐based pKa calculations: (1) The timescale of the backbone's response to ionization events in proteins can range from ps to ms, and even longer; (2) pH‐sensitive fluctuations of the backbone can be localized to both the segment the ionizable residue is attached to or the one that occludes the ionizable group; (3) Structural perturbations are not necessarily propagated through Coulomb interactions; instead, local fluctuations appear to be coupled through the co‐operativity inherent to elements of secondary structure and to networks of hydrogen bonds. These results are consistent with the idea that local conformational fluctuations and stabilities are important determinants of apparent pKa values of ionizable residues in proteins. Proteins 2014; 82:3132–3143. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The protein dipole moment is a low-resolution parameter that characterizes the second-order charge organization of a biomolecule. Theoretical approaches to calculate protein dipole moments rely on pK a values, which are either computed individually for each ionizable residue or obtained from model compounds. The influence of pK a shifts are evaluated first by comparing calculated and measured dipole moments of β-lactoglobulin. Second, calculations are made on a dataset of 66 proteins from the Protein Data Bank, and average differences are determined between dipole moments calculated with model pK as, pK as derived using a Poisson–Boltzmann approach, and empirically-calculated pK as. Dipole moment predictions that neglect pK a shifts are consistently larger than predictions in which they are included. The importance of pK a shifts are observed to vary with protein size, internal permittivity, and solution pH.  相似文献   

8.
Using visible absorption, CD, 1H nmr, and epr spectroscopy, the Cu(II) binging properties of daunomycin, adriamycin, and N-trifluoroacetyl daunomycin in water and ethanol have been explored. The drugs form two water soluble complexes having Cu-drug stoichiometries of 1:1 and 1:2, and with apparent pKas of formation of 5.6 and 6.5, respectively. At pH values above ~8, the drugs form insoluble polymeric complexes with Cu(II). Similar species are also observed in ethanol. The structure of the compounds have been interpreted in terms of binding of the deprotonated hydroxyquinone portion of the drug to the copper ion. No evidence for the binding of the amino group on daunosamine was found.  相似文献   

9.
10.
 The pH dependence of the redox potentials in the tetrahemic cytochrome c 3 from Desulfovibrio vulgaris Hildenborough (redox-Bohr effect) is here investigated using continuum electrostatics methods. The redox-Bohr effect seems to be associated with changes in the protonation state of charged residues in the protein, but the exact residues had not been identified. The global pK a of this phenomenon is dependent on the redox state of the molecule, and the influence of the pH on the microscopic potential of each heme has been experimentally quantified. The availability of detailed experimental data provides us with important and unique guides to the performance of ab initio pK a calculations aiming at the identification of the groups involved. These calculations were performed in several redox states along the reduction pathway, with the double objective of finding groups with redox-linked pK a shifts, and absolute pK as compatible with the redox-Bohr effect. The group with the largest pK a shift along the reduction pathway is propionate D from heme I. Its effect on the redox potential of individual hemes, as calculated by electrostatic calculations, correlates very well with the experimental order of influence, making it a likely candidate. Abnormal titration of the same propionate has been experimentally observed on a homologous cytochrome c 3 from a different strain, thus strengthening the theoretical result. However, its absolute calculated pK a in the fully oxidised cytochrome is outside the zone where the phenomenon is known to occur, but the calculation shows a strong dependence on small conformational changes, suggesting large uncertainties in the calculated value. A group with a pK a value within the experimentally observed range is propionate D from heme IV. Its influence on the redox potential of the hemes does not correlate with the experimental order, indicating that, although it may be one of the possible players on the phenomenon, it cannot be solely responsible for it. Mutation of the Lys45 residue is suggested as an indirect way of probing the importance of the propionate D from heme I in the mechanism. Non-heme groups may also be involved in this process; our calculations indicate His67 and the N-terminal as groups that may play a role. Accuracy and applicability of current continuum electrostatic methods are discussed in the context of this system. Received: 27 March 1997 / Accepted: 19 August 1997  相似文献   

11.
Hog intestinal peroxidase and bovine lactoperoxidase exhibited similar spectral shifts upon pH alteration. From spectrophotometric titrations, it was found that there are hemelinked ionizations of pKa = 4.75 in intestinal peroxidase and pKa = 3.5 in lactoperoxidase. The apparent pKa (pKa′) increased with the increase in chloride concentration. The pKa′ vs log[Cl?] plots showed that the chloride forms complex with the acid forms of these enzymes with a dissociation constant (pK = 2.7). Although the dissociation constant (Kd) of the peroxidase-cyanide complexes is nearly independent of pH, cyanide competed with chloride in the acidic pH region. The slopes of logKd vs log[Cl?] were 1.0 for intestinal peroxidase and 0.5 for lactoperoxidase. The reaction of hydrogen peroxide with these peroxidases was also affected by chloride, similarly as the reaction with cyanide was. The results were explained by assuming that protonation occurs at the distal base and destroys the hydrogen bond between the base and a water molecule at the sixth coordinate position of the heme iron.  相似文献   

12.
LysoSensor Yellow/Blue DND-160, a dual-wavelength fluorophore commonly used for sensing pH in acidic organelles, possesses solvatochromic behavior believed to originate from an intramolecular charge transfer (ICT). Given this, we investigated whether DND-160 can be used for acidic pH sensing under hydrostatic pressures up to 510 atm, a range suitable for studying a wide variety of cellular processes. We found that the emission spectrum of the protonated form does not exhibit sensitivity to pressure, whereas the deprotonated form shows a piezochromic shift consistent with increased ICT character. Although pressure effects on the apparent pKa are buffer solvent dependent, DND-160 retains two-state behavior, making it a useful acidic pH probe under pressure.  相似文献   

13.
Improvement of enzyme function by engineering pH dependence of enzymatic activity is of importance for industrial application of Bacillus circulans xylanases. Target mutation sites were selected by structural alignment between B. circulans xylanase and other xylanases having different pH optima. We selected non-conserved mutant sites within 8 Å from the catalytic residues, to see whether these residues have some role in modulating pKas of the catalytic residues. We hypothesized that the non-conserved residues which may not have any role in enzyme catalysis might perturb pKas of the catalytic residues. Change in pKa of a titratable group due to change in electrostatic potential of a mutation was calculated and the change in pH optimum was predicted from the change in pKa of the catalytic residues. Our strategy is proved to be useful in selection of promising mutants to shift the pH optimum of the xylanases towards desired side.  相似文献   

14.
AlleyCatE is a de novo designed esterase that can be allosterically regulated by calcium ions. This artificial enzyme has been shown to hydrolyze p‐nitrophenyl acetate (pNPA) and 4‐nitrophenyl‐(2‐phenyl)‐propanoate (pNPP) with high catalytic efficiency. AlleyCatE was created by introducing a single‐histidine residue (His144) into a hydrophobic pocket of calmodulin. In this work, we explore the determinants of catalytic properties of AlleyCatE. We obtained the pKa value of the catalytic histidine using experimental measurements by NMR and pH rate profile and compared these values to those predicted from electrostatics pKa calculations (from both empirical and continuum electrostatics calculations). Surprisingly, the pKa value of the catalytic histidine inside the hydrophobic pocket of calmodulin is elevated as compared to the model compound pKa value of this residue in water. We determined that a short‐range favorable interaction with Glu127 contributes to the elevated pKa of His144. We have rationally modulated local electrostatic potential in AlleyCatE to decrease the pKa of its active nucleophile, His144, by 0.7 units. As a direct result of the decrease in the His144 pKa value, catalytic efficiency of the enzyme increased by 45% at pH 6. This work shows that a series of simple NMR experiments that can be performed using low field spectrometers, combined with straightforward computational analysis, provide rapid and accurate guidance to rationally improve catalytic efficiency of histidine‐promoted catalysis. Proteins 2017; 85:1656–1665. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
16.
Chymotrypsinogen, chymotrypsin and anhydrochymotrypsin have been covalently spin-labeled by an analog of bromoacetamide, and the latter two proteins have been labeled by an analog of 1-chloro-3-tosylamido-4-phenyl butanone. The electron paramagnetic resonance spectra of the labeled proteins indicate protein conformational changes accompanying (1) activation of the zymogen and (2) the binding of protons and substrates by the native and anhydro enzymes, and tertiary structural differences between these protein forms which are at once informative and predictable. A spin-label linked to the thioether side-chain of methionine 192 in Chymotrypsinogen may be in contact with a hydrophobic surface. This interaction is lost upon zymogen activation with little change in the isotropic rotational freedom of the nitroxide group. The rotational freedom of the group increases sigmoidally with pH; a spectral dependence upon an ionizing group (pKa = 8.9) is demonstrated. The binding of indole to the labeled enzyme raises the pKa of the ionizing group to 10.2. A spin-label linked to histidine 57 in chymotrypsin senses both indole binding and pH changes directly; the same label in anhydrochymotrypsin responds directly only to changes in pH. Neither histidine-labeled derivative exhibits enzymic activity. The electron paramagnetic resonance spectra of these two labeled proteins at high pH indicate a decrease in the motional freedom of the spin label. The spectral data show that the conformational state of the labeled zymogen is not similar to the high-pH conformational state of the labeled enzyme. Furthermore, the pH-dependent conformational transition of labeled chymotrypsin requires neither the serine 195 hydroxyl nor the histidine 57 imidazole, since the transition occurs normally in derivatized and chemically modified protein forms. The chemical reactivity of histidine 57 in anhydrochymotrypsin is evaluated and the catalytic activities of two histidine alkylated enzymes are compared.  相似文献   

17.
The pKa of 3,8-diamino-6-phenyl-phenanthridine (DAPP), a nonquaternary analog of ethidium bromide, has been determined spectrophotometrically as a function of sodium ion concentration both free in solution and complexed to DNA. Unwinding angle determinations with this compound were determined with Col El DNA using ethidium bromide as a standard. The unwinding angle for DAPP was 24 ± 2° relative to 26° for ethidium, and this suggests that DAPP binds in a manner quite similar to ethidium and with no significant outside bound DAPP under these experimental conditions. Isobestic behavior was obtained on spectrophotometric pH titration above pH 5 as long as the ratio of DNA-phosphate to ligand was between 100 and 300 and the DNA phosphate concentration was approximately 0.01M or greater. The loss of isosbestic behavior which occurred below pH 5 is probably due to titration of the 8 amino group of the ligand complexed to DNA. To circumvent this problem, pKa values and the extinction coefficient of the acidic species were both determined by a computer program using experimental data obtained above pH 5. The pKa of the free compound has only a minor dependence on ionic strength, while the pKa of the ligand bound to DNA in an intercalated complex depends strongly on the sodium ion concentration. The pKa of the DAPP-DNA complex is a linear function of –log[Na+] as predicted by the ion-condensation theory of polyelectrolytes. It was determined that DAPP is essentially completely bound to DNA under the conditions of these experiments by (1) determination of apparent pKa values as a function of total DNA concentration, (2) calculation of binding constants for the neutral species of DAPP, and (3) spectral analysis of the protonated and neutral species of DAPP bound to DNA relative to DAPP free in solution. These results support the ion-condensation theory; provide an independent method for measuring ψ*, the average number of counterions associated per phosphate of DNA in the intercalated conformation; and illustrate that there are no specific pH effects or absolute pKa values for ligands bound to DNA, but only ionic-strength-dependent results.  相似文献   

18.
Values of the association equilibrium constant (Ka) for the binding of the native and of the cyanogen bromide-cleaved bovine basic pancreatic trypsin inhibitor (native BPTI and [Hse lactone-52]-52,53-seco-BPTI, respectively) to neuraminidase-treated porcine pancreatic β-Kallikrein-B (kallikrein) and bovine α-chymotrypsin (chymotrypsin) have been determined between pH4.0 and 9.0, and 20.0°C. Over the whole pH range explored, native BPTI and [Hse lactone-52]-52,53-seco-BPTI show the same affinity for kallikrein. On the other hand, the affinity of [se lactone-52]-52,53-seco-BPTI for chymotrypsin is high4er, around neutrality, than that found for native BPTI by about one order of magnitude, coverging in the acidic pH limb. The simplest mechanism accounting for the observed data implies that, on lowering the pH from 9.0 to 4.0 (i) the decrease in affinity for the binding of native BPTI to kalikrein and chymotrypsin, as well as for the association of [Hse lactone-52]-52,53-seco-BPTI to kalikrein, reflects the acidic pK shift, upon inhibitor association, of a single inozing group; and (ii) the decrease of Ka values for [Hse lactone-52]-52,53-seco-BPTI binding to chymotrypsin appears to be modulated by the acidic pK shift, upon inhibitor association, of two non-equivalent proton-binding residues. On the basis of the stereochemistry of the serine proteinase/inhibitor contact region(s), these data indicate that long-rang structural changes in [Hse lactone-52]-52,53-seco-BPTI are energetically linked to the chymotrypsin: inhibitor complex formation. This observation represents an important aspect for the mechanism of molecular recognition and regulation in BPTI.  相似文献   

19.
Acid dissociation constants of aqueous cyclooctaamylose (8-Cy) have been determined at 15–45°C by pH potentiometry. Standard enthalpies and entropies of dissociation are derived from the temperature dependences of these pKa's. These results are compared to corresponding measurements of aqueous cyclohexaamylose and cycloheptaamylose, and the observed trends are interpreted in terms of complexation of cycloamylose with hydroxide ion. 13C-nmr spectral measurements are reported for 8-Cy in 99.8% D2O solution, and assignments of the observed lines are made with the help of deuterium-induced differential isotopic shift experiments.  相似文献   

20.
This article investigates an ensemble‐based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pKa predictions. Structure‐based pKa calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for pKa prediction, ranging from empirical statistical models to ab initio quantum mechanical approaches. However, each of these methods are based on a set of conceptual assumptions that can effect a model's accuracy and generalizability for pKa prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the García‐Moreno lab. Our cross‐validation study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods with improvements ranging from 45 to 73% over other method classes. This study also compares BMA's predictive performance to other ensemble‐based techniques and demonstrates that BMA can outperform these approaches with improvements ranging from 27 to 60%. This work illustrates a new possible mechanism for improving the accuracy of pKa prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy. Proteins 2014; 82:354–363. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号