首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We examined the effects of the source of recipient oocytes and timing of fusion and activation on the development competence of bovine nuclear transferred (NT) embryos derived from fresh cumulus cells isolated immediately after collection by ovum pickup (OPU). As recipient cytoplasts, we used in vivo-matured oocytes collected from hormone-treated heifers by OPU, or in vitro-matured oocytes from slaughterhouse-derived ovaries. NT embryos were chemically activated immediately (simultaneous fusion and activation, FA) or 2 h (delayed activation, DA) after fusion. When in vitro-matured oocytes were used as recipient cytoplasts, the development rate to the blastocyst stage of NT embryos produced by the DA method (23%) tended to be higher than those by the FA method (15%), but the difference was not significant. NT embryos derived from in vivo-matured cytoplasts have a high blastocyst yield (46%). Pregnancy rate at day 35 did not differ with the timing of fusion and activation (FA vs. DA; 50% vs. 44%) or oocyte source (in vivo- vs. in vitro-matured; 50% vs. 44%). Subsequently, the high fetal losses (88% of pregnancies) were observed with in vitro-matured cytoplasts, whereas no abortions were observed in NT fetuses from in vivo-matured cytoplasts. A total of three embryos derived from fresh cumulus cells developed to term. However, all three cloned calves were stillborn. These results indicate that improvement of development competence after NT is possible by using in vivo-matured oocytes as recipient cytoplasts in bovine NT.  相似文献   

2.
Mouse follicles grown in vitro from preantral to mature stages yield oocytes that can be fertilized in vitro, but embryonic development is poor. To investigate whether this poor development is due to a nuclear or a cytoplasmatic factor, we designed an experiment in which the MII chromosome spindle was exchanged between in vitro-matured oocytes and in vivo-matured oocytes by electrofusion. Subsequent embryo development was evaluated by blastocyst formation rate and blastocyst cell number after parthenogenetic activation. Electrofusion was successful in 62-78% of the oocytes. Transfer of the spindle apparatus from in vitro-matured oocytes to the in vivo MII cytoplasmic environment resulted in a high rate of blastocyst development, whereas in the reverse situation (transfer of the nucleus from in vivo-matured oocytes into in vitro-matured MII cytoplasm) poor quality embryos and a low rate of blastocyst formation was observed. These results indicate that the low developmental competence of in vitro-matured oocytes from mouse preantral follicles after activation is caused by the cytoplasmic component rather than the nuclear component.  相似文献   

3.
We determined the efficacy of a microdrop vitrification procedure for cryopreservation of bovine oocytes, using vitrified oocytes as cytoplasts for intraspecies and intergeneric somatic cell nucleus transfer (NT). In vitro matured bovine MII oocytes were vitrified in microdrops with a vitrification solution containing 35% ethylene glycol, 5% polyvinyl pyrrolidone, and 0.4 M trehalose. After warming, approximately 80% of the vitrified oocytes were morphologically normal, and their enucleation rate was similar to that of fresh oocytes. The NT embryos constructed with bovine cumulus cells and the vitrified oocytes developed similar to blastocysts constructed with fresh oocytes, although the cell number of NT blastocysts originating from vitrified oocytes was lower than that of the fresh control. In a second experiment, we examined the development of NT embryos constructed with vitrified bovine oocytes and bovine fibroblasts (intraspecies NT embryos) or swamp buffalo fibroblasts (intergeneric NT embryos). There were no differences between the intraspecies and intergeneric NT embryos in fusion, cleavage and development to blastocysts, except for lower cell numbers in the intergeneric NT blastocysts. In conclusion, the efficacy of this microdrop vitrification procedure and the production of swamp buffalo NT blastocysts using vitrified bovine oocytes was demonstrated.  相似文献   

4.
5.
Nuclear and pronuclear transfer procedures were used to assess the functional competence of the nucleus and cytoplasm of mouse germinal vesicle-stage oocytes denuded of granulosa cells and matured in vitro or in vivo before artificial activation using a sequential treatment of A23187 + cycloheximide. Following activation, in vitro-matured oocytes were "fertilized" by inserting a male pronucleus (PN), cultured to the 2-cell stage, and then transferred to the oviducts of foster mothers. No live births were noted, whereas a 17% live birth rate was observed when in vivo-matured oocytes were used. The developmental competency of other zygotes was similarly assessed following the exchange of haploid PN of matured and activated eggs with the female PN of fertilized zygotes. When PN of oocytes subjected to maturation and activation in vitro were transferred, only 1 of 79 reconstructed zygotes developed to term. In contrast, the live birth rate was 21% (11 of 53) for zygotes reconstructed with PN from in vivo-matured oocytes. Moreover, a live birth rate of 23% (8 of 35) was observed for reconstructed zygotes with female PN from "hybrid" oocytes created by transferring the metaphase II nuclei of in vitro-matured oocytes into enucleated, in vivo-matured oocytes before activation. Such results suggest that the nucleus of an in vitro-matured oocyte can support embryonic development, but only when it is activated in the proper ooplasmic milieu. The cellular factors creating this ooplasmic milieu appear to develop normally in vivo during follicle maturation to metaphase II, but they fail to do so when the oocytes are denuded of granulosa cells and cultured in vitro before the final stages of maturation. In parallel studies, male and female PN of in vivo-fertilized zygotes were inserted into oocytes that were activated and enucleated following either in vitro or in vivo maturation. Live birth rates were comparable at 19% (5 of 27) and 18% (9 of 49), respectively, suggesting that, regardless of the environment of the final stages of oocyte maturation, the resultant ooplasm is competent to support all aspects of embryonic development once activation and PN formation has been completed. Such findings only point further toward the importance of the condition of the ooplasmic milieu at the time of chemical activation. Whether a similar situation exists when eggs are activated following sperm penetration remains to be determined.  相似文献   

6.
Germinal vesicle (GV) oocytes matured in vitro are an alternative source for cytoplasmic recipients of nuclear transfer (NT). However, the developmental potential of oocytes matured in vitro is limited. In this study, we developed a protein-free maturation medium for mouse GV oocytes. Following parthenogenetic activation, the oocytes matured in the protein-free medium develop to blastocyst stage with a high efficiency, even up to the rate obtained from in vivo MII-oocytes (90.6% vs. 92.8%). Using the oocytes matured in the protein-free medium as the recipient, NT embryos develop to the blastocyst stage (17.6%). To further improve the developmental potential of NT embryos, we performed serial NT and compared the effect of three different activated cytoplasm samples derived from in vitro matured oocytes as the second recipient, that is, the effect of in vitro fertilized (IVF) zygote, the preactivated cytoplast and the IVF cytoplast, on the development of NT embryos. We found that when the pronucleus of NT zygote was transferred into the cytoplasm of the IVF zygote, the blastocyst formation increased to 39.4%. This is the first report to demonstrate the IVF zygote from oocytes matured in protein-free medium can be used successfully as the recipient for serial NT to enhance the developmental potential of mouse NT embryos from oocytes matured in the protein-free medium.  相似文献   

7.
Factors influencing premature chromosome condensation (PCC) in transferred rat nuclei have been examined. Chromosome condensation of rat cumulus cell nuclei did not occur when the cell nuclei were injected into enucleated rat oocytes. By contrast, chromosome condensation did occur after transfer to enucleated mouse oocytes or intact rat oocytes. In the first serial NT experiment, rat somatic cell nuclei were injected into enucleated mouse oocytes, and the reconstructed oocytes were activated by strontium chloride. From these reconstructed embryos, karyoplasts containing pronucleus-like vesicles were transferred into pronuclear zygote-derived cytoplasts by a DC pulse. Transfer of a total of 340 serial NT zygotes into recipient females, including 206 two-cell embryos, resulted in only seven implantation sites. In the second serial NT experiment, rat somatic cell nuclei were injected into intact rat oocytes; the recipient metaphase-plate was then aspirated under UV light from the NT oocytes in which PCC of injected nuclei was observed. After activation of the NT oocytes, karyoplasts were introduced into zygote-derived cytoplasts. Transfer of a total of 115 serial NT zygotes, including 37 two-cell embryos, resulted in four implantation sites but no live offspring. These results establish a mean of inducing chromosome condensation in rat oocytes and demonstrate that reconstructed rat zygotes can be prepared by serial NT procedures. Developmental competence of these embryos remains to be clarified.  相似文献   

8.
Genetically modified pigs represent a great promise for generating models of human diseases and producing new breeds.Generation of genetically edited pigs using somatic cell nuclear transfer(SCNT)or zygote cytoplasmic microinjection is a tedious process due to the low developmental rate or mosaicism of the founder(FO).Herein,we developed a method termed germinal vesicle oocyte gene editing(GVGE)to produce non-mosaic porcine embryos by editing maternal alleles during the GV to MII transition.Injection of Cas9 mRNA and X-linked Dmd gene-specific gRNA into GV oocytes did not affect their developmental potential.The MII oocytes edited during in vitro maturation(IVM)could develop into blastocysts after parthenogenetic activation(PA)or in vitro fertilization(IVF).Genotyping results indicated that the maternal gene X-linked Dmd could be efficiently edited during oocyte maturation.Up to81.3% of the edited IVF embryos were non-mosaic Dmd gene mutant embryos.In conclusion,GVGE might be a valuable method for the generation of non-mosaic maternal allele edited FO embryos in a short simple step.  相似文献   

9.
In this study, micromanipulation and electrofusion conditions for the cloning of in vitro-produced bovine embryos (here after termed IVM/IVF embryos) derived from in vitro-matured (IVM) and in vitro-fertilized (IVF) oocytes were established. The effect of DC field strength on the fusion rate was tested in a model system using pronuclear stage embryos in which a cytoplasmic vesicle was removed and reinserted. Efficient fusion (80%) was obtained by applying a pulse of 1.75 kV/cm for 40 μsec. In vitro development of manipulated pronuclear stage embryos was as efficient as that of unmanipulated control embryos. Different fusion media were compared in the cloning procedure, using IVM oocytes as recipients and blastomeres from day 6 IVM/IVF donor embryos. Zimmermann cell fusion medium reduced the lysis of nuclear transfer embryos compared to F300 (5% vs. 25%). The effects of drugs disrupting the microfilaments and microtubuli were determined. Neither the addition of cytochalasin B (CCB) for 1 hr in the postfusion medium nor incubation of donor blastomeres with nocodazole had a significant effect on the fusion or cleavage rate of the nuclear transfer embryos. Additional experiments demonstrated that there was no difference in developmental potential between nuclear transfer embryos allowed to develop in vitro or in vivo and that the embryos gave a 15% pregnancy rate in recipient cattle. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Li CJ  Fan BQ 《Theriogenology》1997,48(1):33-41
Mitochondrial reorganization during meiotic maturation and parthenogenetic activation was studied in mouse oocytes using a laser scanning confocal microscope and a transmission electron microscope. Mitochondria were mainly distributed perinuclearly in the germinal vesicle (GV) stage oocytes and were dispersed throughout ooplasm after germinal vesicle breakdown (GVBD), except for a slightly higher occurrence in one hemisphere of oocytes, from which the first polar body (PbI) would become extruded. Mitochondria reaggregated around the metaphae II (MII) spindle and pronuclear region after alcohol activatation at the MII stage. The mitochondrial distribution may correspond to the Ca(2+) changes during meiotic maturation and parthenogenetic activation.  相似文献   

11.
Protein kinase C (PKC) is a family of Ser/Thr protein kinases that can be activated by Ca2+, phospholipid and diacylglycerol. There is evidence that PKC plays key roles in the meiotic maturation and activation of mammalian oocytes. The present study aimed to monitor the effect of age, germinal vesicle (GV) transfer and modified nucleoplasmic ratio on the subcellular distribution profile of PKCα, an important isozyme of PKC, in mouse oocytes undergoing meiotic maturation and following egg activation. Germinal vesicle oocytes were collected from 6-8-week-old and 12-month-old mice. Germinal vesicle-reconstructed oocytes and GV oocytes with one-half or one-third of the original oocyte volume were created using micromanipulation and electrofusion. The subcellular localization of PKCα was detected by immunocytochemistry and laser confocal microscopy. Our study showed that PKCα had a similar location pattern in oocytes and early embryos from young and old mice. PKCα was localized evenly in ooplasm, with weak staining in GV at the GV stage, and present in the entire meiosis II (MII) spindle at the MII stage. In pronuclear and 2-cell embryos, PKCα was concentrated in the nucleus except for the nucleolus. After the GV oocytes were reconstructed, the resultant MII oocytes and embryos showed a similar distribution of PKCα between reconstructed and unreconstructed controls. After one-half or two-thirds of the cytoplasm was removed from the GV oocytes, PKCα still had a similar location pattern in MII oocytes and early embryos from the GV oocytes with modified nucleoplasmic ratio. Our study showed that age, GV transfer and modified nucleocytoplasmic ratio does not affect distribution of PKCα during mouse oocyte maturation, activation, and early embryonic mitosis.  相似文献   

12.
The developmental ability of nuclear transplant sheep embryos derived from in vitro matured oocytes was studied by controlling cell-cycle coordination of donor embryonic nuclei and recipient cytoplasts. Oocytes were recovered from nonatretic antral follicles of adult sheep ovaries and cocultured with follicle shells in M199-based medium supplemented with gonadotrophins in a nonstatic system. Effective activation of IVM oocytes was obtained by applying two pulses of 1.0 kv/cm 22 min apart in inositol-based electroporation medium to oocytes matured in vitro for 27 hr. Synthesis of DNA (S-phase) was assessed by BrdU incorporation and was found to initiate around 5 hpa (hours postactivation) and to persist until 18 hpa. Mitotic blastomeres were induced by treating embryos with 6.6 μM nocodazole for 14–17 hr. Three types of transfers were compared directly: “S → S,” early embryonic nuclei (mostly in S-phase) were transferred to presumptive S-phase cytoplasts; “M → MII,” nocodazole-treated embryonic nuclei (most in M-phase) were transferred to MII-phase cytoplasts; and control (S → MII), conventional nuclear transfer of fusion and activation simultaneously. The results showed that fusion and recovery rates did not differ among the three groups. However, after 6 days of in vivo culture, the morula and blastocyst formation rate was significantly higher for the M → MII combination than for the control (28.3% vs. 8.1%, P < 0.05), while no significant differences in developmental rate were observed between S → S and M → MII, and between S → S and control, though developmental rate was also increased for S → S compared to control (20.9% vs. 8.1%, P > 0.05). Transfer of blastocysts derived from M → MII or S → S nuclear cytoplasmic reconstitution to synchronized recipient ewes resulted in the birth of lambs. These data suggest that in vitro matured oocytes can support full-term development of nuclear transplant sheep embryos when the cell cycle of nucleus and cytoplasm is coordinated, and that M → MII nuclear transfer might be an efficient and simple way to improve the developmental competence of the reconstituted embryos. Mol. Reprod. Dev. 47:255–264, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
We have examined the reprogramming ability of donor fibroblast nuclei in various phases of the cell cycle, upon transfer to cytoplasts, using a bovine nuclear transfer (NT) model. Bovine fetal fibroblasts were cultured in reduced serum and conditioned medium to induce quiescence (G0) and treated with nocodazole to induce M phase arrest. Unsynchronized actively dividing cells (control) were mainly in G1. Cells synchronized in G0, M, and G1 phase were transferred to enucleated bovine MII oocytes by direct injection using the Piezo-Drill microinjector. NT oocytes were artificially activated following injection. Cells at the M phase were also transferred to enucleated oocytes after artificial activation. Cells induced into quiescence by serum starvation and unsynchronized donor cells produced the highest rates of development to the morula/blastocyst stage (20% and 18%, respectively). Development to blastocyst was significantly higher in parthenogenetic controls compared to NT embryos. The transfer of M phase nuclei to MII cytoplasts was not associated with high development to the blastocyst stage. Nevertheless, determining the viability of these embryos requires transfer to recipient animals and assessment of in vivo development.  相似文献   

14.
Birth of African Wildcat cloned kittens born from domestic cats   总被引:5,自引:0,他引:5  
In the present study, we used the African Wildcat (Felis silvestris lybica) as a somatic cell donor to evaluate the in vivo developmental competence, after transfer into domestic cat recipients, of cloned embryos produced by the fusion of African Wildcat (AWC) fibroblast cell nuclei with domestic cat cytoplasts. Cloned embryos were produced by fusion of a single AWC somatic cell to in vivo or in vitro enucleated domestic cat cytoplasts. When the two sources of oocytes were compared, fusion rate was higher using in vivo-matured oocytes as recipient cytoplasts, but cleavage rate was higher after reconstruction of in vitro-matured oocytes. To determine the number of reconstructed embryos required per domestic cat recipient to consistently establish pregnancies, AWC cloned embryos were transferred within two groups: recipients (n = 24) receiving < or =25 embryos and recipients (n = 26) receiving > or =30 embryos. Twelve recipients (46.2%) receiving > or =30 embryos were diagnosed to be pregnant, while no pregnancies were established in recipients receiving < or =25 NT embryos. Also, to determine the influence of length of in vitro culture on pregnancy rate, we compared oviductal transfer on day 1 and uterine transfer on day 5, 6, or 7. Pregnancy rates were similar after transfer of embryos on day 1 (6/12; 50.0%), day 5 (4/9; 44.4%), or day 6 (2/5; 40.0%) to synchronous recipients, but the number of fetuses developing after transfer of embryos on day 1 (n = 17), versus day 5 (n = 4) or day 6 (n = 3) was significantly different. Of the 12 pregnant recipients, nine (75%) developed to term and fetal resorption or abortion occurred in the other three (25%) from day 30 to 48 of gestation. Of a total of 17 cloned kittens born, seven were stillborn, eight died within hours of delivery or up to 6 weeks of age, and two are alive and healthy. Perinatal mortality was due to lung immaturity at premature delivery, placental separation and bacterial septicemia. Subsequent DNA analysis of 12 cat-specific microsatellite loci confirmed that all 17 kittens were clones of the AWC donor male. These AWC kittens represent the first wild carnivores to be produced by nuclear transfer.  相似文献   

15.
Production of a cloned calf using zona-free serial nuclear transfer   总被引:4,自引:0,他引:4  
The efficiency of generating cloned animals following somatic cell nuclear transfer appears to have reached a plateau, despite ongoing research to improve developmental outcomes. A major limitation appears in the restricted nature of the adult/donor cell to de-differentiate to form a totipotent nucleus. Serial nuclear transfer, a modified cloning technique, has increased the developmental competence of amphibian, murine and porcine cloned embryos. This procedure involves a second nuclear transfer step; pronuclear-like cloned nuclei are transferred into pronuclear stage zygotic cytoplasts. The present study reports on the development of a serial nuclear transfer technique in the bovine, based on a zona-free method (hand-made cloning), resulting in the birth of a cloned calf. Comparisons were made between embryos produced by hand-made cloning and serial nuclear transfer. There were no differences between in vitro development or differential cell counts in the blastocysts produced. Transfer of 16 serial hand-made cloned blastocysts resulted in the production of one healthy calf (6%), whereas hand-made cloning resulted in the birth of 1 calf from 23 transferred blastocysts (4%). One serial nuclear transfer pre-term fetus had renal and hepatic abnormalities (previously observed in clones from this cell line). Although it may not be as beneficial in the bovine as in other species, normal placentation (size, placentomes and umbilicus) was encouraging. Refinement of this technique may help to identify species-specific differences in zygotic competence that affect reprogramming of donor cell nuclei and that may improve efficiency.  相似文献   

16.
Successful production of cloned animals derived from somatic cells has been achieved in sheep, cattle, goats, mice, pigs, rabbits, etc. But the efficiency of nuclear transfer is very low in all species. The present study was conducted to examine somatic nucleus remodelling and developmental ability in vitro of rabbit embryos by transferring somatic cells into enucleated germinal vesicle (GV), metaphase I (MI) or metaphase II (MII) oocytes. Microtubules were organized around condensed chromosomes after the nucleus had been transferred into any of the three types of cytoplasm. A bipolar spindle was formed in enucleated MII cytoplasm. Most of the nuclei failed to form a normal spindle within GV and MI cytoplasm. Some chromosomes scattered throughout the cytoplasm and some formed a monopolar spindle. Pseudopronucleus formation was observed in all three types of cytoplasm. Reconstructed embryos with MI and MII cytoplasm could develop to blastcysts. Nuclei in GV cytoplasm could develop only to the 4-cell stage. These results suggest that (1) GV material is important for nucleus remodelling after nuclear transfer, and (2) oocyte cytoplasm has the capacity to dedifferentiate somatic cells during oocyte maturation.  相似文献   

17.
18.
We evaluated: (1) cleavage rate after IVF or intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification (experiment 1); and (2) fetal development after transfer of resultant ICSI-derived embryos into recipients (experiment 2). In vivo-matured cumulus-oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment. In vitro-matured oocytes were obtained by mincing ovaries (from local veterinary clinics) and placing COCs into maturation medium for 24 h. Mature oocytes were denuded and cryopreserved in a vitrification solution of 15% DMSO, 15% ethylene glycol, and 18% sucrose. In experiment 1, for both in vivo- and in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes and after ICSI of vitrified oocytes were not different (P > 0.05). After vitrification, blastocyst development occurred only in IVF-derived, in vitro-matured oocytes. In experiment 2, 18 presumptive zygotes and four two-cell embryos derived by ICSI of vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo- and 12 in vitro-matured oocytes were transferred by laparoscopy into the oviducts of two recipients, respectively. On Day 21, there were three fetuses in one recipient and one fetus in the other. On Days 63 and 66 of gestation, four live kittens were born. In vivo viability of zygotes and/or embryos produced via ICSI of vitrified oocytes was established by birth of live kittens after transfer to recipients.  相似文献   

19.
The present study was conducted to examine the utility of rapidly matured oocytes as recipients for production of porcine embryos reconstituted with adult skin fibroblasts and whether arrest of meiotic resumption of recipient oocytes at the germinal vesicle (GV) stage by dibutyryl cyclic AMP (dbcAMP) improves in vitro developmental rates after reconstruction. At 24 h of maturation in the medium, 36.3% of oocytes reached the metaphase II (MII) stage. At 30 h of maturation, the percentage (71.4%) of MII oocytes did not significantly differ from that (78.0%) at 42 h of maturation. When MII oocytes recovered at 24 h of maturation were used as recipients, 22/156 (14.1%) cloned embryos developing to the blastocyst stage was significantly (P < 0.05) higher than those of embryos reconstituted with oocytes collected at 30 h (5/168; 3.0%) and 42 h (13/217; 6.0%) of maturation. Culture of oocytes in medium containing 1 mM dbcAMP for 20 h maintained 72.9% in the GV stage, whereas only 15.0% of nontreated oocytes were in the GV stage (P < 0.05). The effect of dbcAMP was reversible. However, the treatment of recipient oocytes with dbcAMP did not affect the development of reconstructed embryos when compared with nontreated oocytes. These results indicate that rapidly matured oocytes are superior in their ability to support development of porcine reconstructed embryos; however, arrest of meiotic resumption of recipient oocytes at the GV stage by dbcAMP does not improve reconstructed embryo developmental rates.  相似文献   

20.
In this study, nuclear transfer (NT) embryos were produced by using C57Bl/6 mouse morula blastomeres and Kunming mouse metaphase II (MII) oocytes as donors and recipients, respectively, to investigate the effects of sucrose treatment of MII oocytes with different concentrations on the manipulation time of NT, electrofusion and the in vitro and in vivo development of reconstructed embryos. The results demonstrated that: (i) when the oocytes were enucleated with 1, 2 and 3% sucrose treatment, respectively, the enucleating rates were not affected by the different sucrose concentrations, but the manipulation time had significant difference and the mean nuclear transfer manipulation times of every oocyte were 180+/-10 s, 130+/-10 s and 120+/-10 s, respectively; (ii) different sucrose concentrations had no significant effects on the fusion rate and the in vitro developmental potential of the NT embryos (p>0.05). Furthermore, 59 embryos were transplanted into the oviducts of two recipients. In the end, three dead full-term developed fetuses were obtained on 21 days post coitus (dpc). These results suggested that the mouse MII oocytes enucleated via sucrose treatment might be an alternative source for mouse cloning and could support the embryonic NT embryos developed to term in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号