首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although high-density lipoprotein is atheroprotective, it can become dysfunctional in chronic inflammatory conditions and increase cardiovascular risk. We previously demonstrated that HDL from subjects with documented coronary artery disease is dysfunctional and is pro-oxidant/proinflammatory in macrophages. Here we examined the influence of dysfunctional/proinflammatory HDL (piHDL) on lipid accumulation in human macrophages, in comparison to functional HDL (nHDL). Exposure of macrophages to piHDL, in contrast to nHDL, resulted in oxidative stress and marked uptake of lipids from piHDL, leading to the formation of foam cell phenotype as noted by oil red O staining with concomitant increase in total cellular cholesterol content. Using western blotting, we identified that piHDL profoundly upregulated the expression of scavenger receptor CD36 and suppressed the expression of ABCG1 and SRB1 in macrophages, thereby facilitating cholesterol influx capacity of macrophages. We then identified that CD36 did not act alone, indeed it was activated in macrophages along with ERK/MAPK, in response to piHDL, which in turn led to lipid accumulation as well as proinflammatory response via activation of NFkB and subsequent release of proinflammatory markers—TNF-? and MMP-9. These effects were confirmed using pharmacological inhibitors for either CD36 or ERK/MAPK. Furthermore, piHDL treatment moderately activated PPAR-γ and Nrf2, the known regulators of CD36 in macrophages, suggesting that the two forms of HDL differentially regulate CD36 expression. Taken together, the results demonstrate that a novel CD36-ERK/MAPK-dependent mechanism is involved in macrophage lipid accumulation by piHDL, there by revealing the importance of functional deficiency in HDL and its potential link to atherogenesis.  相似文献   

2.
Plasma high-density lipoprotein cholesterol (HDL-C) levels are inversely associated with coronary artery disease risk in large epidemiologic studies. This rule, however, has many exceptions in individual patients, and evidence suggests that other facets of high-density lipoprotein particle biology not captured by measuring HDL-C levels are responsible for HDL's effects in vivo. This article reviews the evidence for the protective nature of HDL, current evidence from animal and human studies regarding HDL-based therapies, the major steps in HDL particle formation and metabolism, alterations leading to dysfunctional HDL in diabetes and inflammatory states, and potential alternatives to HDL-C to measure HDL function and predict its protective value clinically.  相似文献   

3.
High-density lipoprotein (HDL) particles are anti-atherosclerotic, by virtue of their functions in reverse cholesterol transportation, anti-inflammation and anti-oxidation. However, recent studies have cast doubt on the cardio-protective role of HDL. Structural modification and composition alteration of HDL due to chronic inflammation and acute phase responses may result in loss of normal biological function and even convert HDL into a pro-inflammatory and pro-oxidative agent. Therefore, the assessment of dysfunctional HDL has become a novel target to investigate the association between HDL and coronary artery disease risk. This review article summarizes the laboratory assessment of dysfunctional HDL.  相似文献   

4.
Oxidized HDL (ox-HDL) has been reported to reduce free cholesterol efflux from cells. In this study we investigate the effect of different stages of ox-HDL on macrophage membrane fluidity and its effect on free cholesterol efflux from macrophages as a cell function influenced by ox-HDL. HDL was oxidized by means of conjugated diene production using copper as a prooxidant. Fluidity of HDL and human THP-1 macrophage membranes was evaluated by changes in fluorescence anisotropy (r) by DPH probe where lower (r) values give higher fluidity. We found that ox-HDL derived from the propagation phase (PP-HDL) and the decomposition phase (DP-HDL) became less fluid ((r): 0.263+/-0.001, 0.279+/-0.002, respectively) than HDL from the lag phase (LP-HDL) and native HDL (nat-HDL) ((r): 0.206+/-0.001) (P<0.05). Macrophages incubated with PP-HDL and DP-HDL had less fluid membranes ((r): 0.231+/-0.001, 0.243+/-0.002, respectively) than those incubated with LP-HDL and nat-HDL ((r): 0.223+/-0.001) (P<0.05). Consequently, fluidity was reduced not only in ox-HDL but also in the cell membranes exposed to ox-HDL. A significant negative correlation was observed between macrophage membrane fluorescence anisotropy (r) and free cholesterol efflux from these cells (-0.876; P<0.05). Thus, lower membrane fluidity was associated with lower free cholesterol efflux from cells. In conclusion, the increase in the HDL oxidation process leads to a lost of macrophage membrane fluidity that could contribute to an explanation of the reduction of free cholesterol efflux from cells by ox-HDL.  相似文献   

5.
Endothelial progenitor cells (EPC) enhance endothelial cell repair, improve endothelial dysfunction and are a predictor for cardiovascular mortality. High-density lipoprotein (HDL) cholesterol levels inversely correlate with cardiovascular events and have vasculoprotective effects. Here we postulate that HDL influences EPC biology. HDL and EPC were isolated according to standard procedures. Differentiation of mononuclear cells into DiLDL/lectin positive cells was enhanced after HDL treatment compared to vehicle. HDL was able to inhibit apoptosis (TUNEL assay, annexin V staining) while proliferation (BrdU incorporation) of early outgrowth colonies after extended cell cultivation (14 days) was increased. Flow chamber experiments revealed an improved adhesion of HDL pre-incubated EPC on human coronary artery endothelial cells (HCAEC) compared to vehicle while HDL treatment of HCAEC prevented adhesion of inflammatory cells. Flow cytometry demonstrated an up-regulation of beta2- and alpha4-integrins on HDL pre-incubated EPC. Blocking experiments revealed a unique role of beta2-integrin in EPC adhesion. Treatment of wild-type mice with recombinant HDL after endothelial denudation resulted in enhanced re-endothelialization compared to vehicle. Finally, in patients with coronary artery disease a correlation between circulating EPC and HDL concentrations was demonstrated. We provide evidence that HDL mediates important vasculoprotective action via the improvement of function of circulating EPC.  相似文献   

6.
Protein oxidation by phagocytic white blood cells is implicated in tissue injury during inflammation. One important target might be high-density lipoprotein (HDL), which protects against atherosclerosis by removing excess cholesterol from artery wall macrophages. In the human artery wall, cholesterol-laden macrophages are a rich source of myeloperoxidase (MPO), which uses hydrogen peroxide for oxidative reactions in the extracellular milieu. Levels of two characteristic products of MPO-chlorotyrosine and nitrotyrosine-are markedly elevated in HDL from human atherosclerotic lesions. Here, we describe how MPO-dependent chlorination impairs the ability of apolipoprotein A-I (apoA-I), HDL's major protein, to transport cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. Faulty interactions between apoA-I and ABCA1 are involved. Tandem mass spectrometry and investigations of mutated forms of apoA-I demonstrate that tyrosine residues in apoA-I are chlorinated in a site-specific manner by chloramine intermediates on suitably juxtaposed lysine residues. Plasma HDL isolated from subjects with coronary artery disease (CAD) also contains higher levels of chlorinated and nitrated tyrosine residues than HDL from healthy subjects. Thus, the presence of chlorinated HDL might serve as a marker of CAD risk. Because HDL damaged by MPO in vitro becomes dysfunctional, inhibiting MPO in vivo might be cardioprotective.  相似文献   

7.
Currently, pharmacogenetic studies are at an impasse as the low prevalence (<2%) of most variants hinder their pharmacogenetic analysis with population sizes often inadequate for sufficiently powered studies. Grouping rare mutations by functional phenotype rather than mutation site can potentially increase sample size. Using human population-based studies (n = 1,761) to search for dysfunctional human prostacyclin receptor (hIP) variants, we recently discovered 18 non-synonymous mutations, all with frequencies less than 2% in our study cohort. Eight of the 18 had defects in binding, activation, and/or protein stability/folding. Mutations (M113T, L104R, and R279C) in three highly conserved positions demonstrated severe misfolding manifested by impaired binding and activation of cell surface receptors. To assess for association with coronary artery disease, we performed a case-control study comparing coronary angiographic results from patients with reduced cAMP production arising from the non-synonymous mutations (n = 23) with patients with non-synonymous mutations that had no reduction in cAMP (n = 17). Major coronary artery obstruction was significantly increased in the dysfunctional mutation group in comparison with the silent mutations. We then compared the 23 dysfunctional receptor patients with 69 age- and risk factor-matched controls (1:3). This verified the significantly increased coronary disease in the non-synonymous dysfunctional variant cohort. This study demonstrates the potential utility of in vitro functional characterization in predicting clinical phenotypes and represents the most comprehensive characterization of human prostacyclin receptor genetic variants to date.  相似文献   

8.
The association of cholesterol gall stones with coronary artery disease is controversial. To investigate this possible relation at the biochemical level, bile cholesterol saturation and the plasma concentrations of triglycerides, total cholesterol, and high-density-lipoprotein cholesterol (HDL cholesterol) were measured in 25 healthy, middle-aged women. Bile cholesterol saturation index was negatively correlated with HDL cholesterol. It was positively correlated with plasma triglycerides and with total cholesterol minus HDL cholesterol. These findings provide a biochemical basis for a positive association in women between cholesterol gall stones and coronary artery disease.  相似文献   

9.
10.
The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.  相似文献   

11.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

12.
A review of CETP and its relation to atherosclerosis   总被引:8,自引:0,他引:8  
Although the atheroprotective role of HDL cholesterol (HDL-c) is well documented, effective therapeutics to selectively increase plasma HDL-c levels are not yet available. Recent progress in unraveling human HDL metabolism has fuelled the development of strategies to decrease the incidence and progression of coronary artery disease (CAD) by raising HDL-c. In this quest for novel drugs, cholesteryl ester transfer protein (CETP) represents a pivotal target. The role of this plasma protein in HDL metabolism is highlighted by the discovery that genetic CETP deficiency is the main cause of high HDL-c levels in Asian populations. The use of CETP inhibitors to effectively increase HDL-c concentration in humans was recently published and data with regard to the effect on human atherosclerosis are expected shortly. This review discusses the potential of CETP inhibitors to protect against atherosclerosis in the context of the current knowledge of CETP function in both rodents and humans.  相似文献   

13.
The mechanisms that deprive HDL of its cardioprotective properties are poorly understood. One potential pathway involves oxidative damage of HDL proteins by myeloperoxidase (MPO) a heme enzyme secreted by human artery wall macrophages. Mass spectrometric analysis demonstrated that levels of 3-chlorotyrosine and 3-nitrotyrosine - two characteristic products of MPO - are elevated in HDL isolated from patients with established cardiovascular disease. When apolipoprotein A-I (apoA-I), the major HDL protein, is oxidized by MPO, its ability to promote cellular cholesterol efflux by the membrane-associated ATP-binding cassette transporter A1 (ABCA1) pathway is diminished. Biochemical studies revealed that oxidation of specific tyrosine and methionine residues in apoA-I contributes to this loss of ABCA1 activity. Another potential mechanism for generating dysfunctional HDL involves covalent modification of apoA-I by reactive carbonyls, which have been implicated in atherogenesis and diabetic vascular disease. Indeed, modification of apoA-I by malondialdehyde (MDA) or acrolein also markedly impaired the lipoprotein's ability to promote cellular cholesterol efflux by the ABCA1 pathway. Tandem mass spectrometric analyses revealed that these reactive carbonyls target specific Lys residues in the C-terminus of apoA-I. Importantly, immunochemical analyses showed that levels of MDA-protein adducts are elevated in HDL isolated from human atherosclerotic lesions. Also, apoA-I co-localized with acrolein adducts in such lesions. Thus, lipid peroxidation products might specifically modify HDL in vivo. Our observations support the hypotheses that MPO and reactive carbonyls might generate dysfunctional HDL in humans. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

14.
PURPOSE OF REVIEW: The appearance of scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) in macrophages and liver implicates these transporters in different stages of reverse cholesterol transport. This review focuses on the role of SR-BI and ABCA1 in reverse cholesterol transport in the context of atherosclerotic lesion development. RECENT FINDINGS: Recent studies indicate that hepatic expression of ABCA1 and SR-BI is important for the generation of nascent HDL and the delivery of HDL cholesteryl esters to the liver, respectively. Although macrophage SR-BI and ABCA1 do not contribute significantly to circulating HDL levels, the perpetual cycle of HDL lipidation and delipidation by the liver ensures the availability of acceptors for cholesterol efflux that maintain cholesterol homeostasis in arterial macrophages, thereby reducing atherogenesis. In addition to its established role in the selective uptake of HDL cholesteryl esters, there is now evidence that hepatic SR-BI facilitates postprandial lipid metabolism, and that hepatic secretion of VLDL is dependent on ABCA1-mediated nascent HDL formation. Thus, remnant and HDL metabolism are more intimately intertwined in hepatic lipid metabolism than has previously been appreciated. SUMMARY: Recent advances in the understanding of the role of ABCA1 and SR-BI in HDL metabolism and their atheroprotective properties indicate the significant potential of modulating ABCA1 and SR-BI expression in both arterial wall macrophages and the liver for the treatment of atherosclerotic coronary artery disease.  相似文献   

15.
We present an ODE model which we use to investigate how High Density Lipoproteins (HDL) reduce the inflammatory response in atherosclerosis. HDL causes atherosclerotic plaque stabilisation and regression, and is an important potential marker and prevention target for cardiovascular disease. HDL enables cholesterol efflux from the arterial wall, macrophage and foam cell emigration, and has other athero-protective effects. Our basic inflammatory model is augmented to include several different ways that HDL can act in early atherosclerosis. In each case, the action of HDL is represented via a parameter in the model. The long-term model behaviour is investigated through phase plane analysis and simulations. Our results indicate that only HDL-enabled cholesterol efflux can stabilise the internalised lipid content in the lesion so that it does not continue to grow, but this does not reduce macrophage numbers which is required to stabilise the lesion or prevent rupture. HDL-enabled macrophage emigration guarantees lesion stabilisation by maintaining stable macrophage content.  相似文献   

16.
Substantial evidence supports the notion that oxidative processes participate in the pathogenesis of atherosclerotic heart disease. Major evidence for myeloperoxidase (MPO) as enzymatic catalyst for oxidative modification of lipoproteins in the artery wall has been suggested in numerous studies performed with low-density lipoprotein. In contrast to low-density lipoprotein, plasma levels of high-density lipoprotein (HDL)-cholesterol and apoAI, the major apolipoprotein of HDL, inversely correlate with the risk of developing coronary artery disease. These antiatherosclerotic effects are attributed mainly to HDL's capacity to transport excess cholesterol from arterial wall cells to the liver during 'reverse cholesterol transport'. There is now strong evidence that HDL is a selective in vivo target for MPO-catalyzed oxidation impairing the cardioprotective and antiinflammatory capacity of this antiatherogenic lipoprotein. MPO is enzymatically active in human lesion material and was found to be associated with HDL extracted from human atheroma. MPO-catalyzed oxidation products are highly enriched in circulating HDL from individuals with cardiovascular disease where MPO concentrations are also increased. The oxidative potential of MPO involves an array of intermediate-generated reactive oxygen and reactive nitrogen species and the ability of MPO to generate chlorinating oxidants-in particular hypochlorous acid/hypochlorite-under physiological conditions is a unique and defining activity for this enzyme. All these MPO-generated reactive products may affect structure and function of HDL as well as the activity of HDL-associated enzymes involved in conversion and remodeling of the lipoprotein particle, and represent clinically useful markers for atherosclerosis.  相似文献   

17.
The relation of coronary artery disease to plasma lipoproteins was examined in 104 men aged 35-65 years undergoing coronary angiography for suspected myocardial ischaemia. A score reflecting the number, degree, and length of stenoses in seven major coronary arteries was assigned to each angiogram. Lipid concentrations in lipoprotein subfractions were measured after preparative ultracentrifugation; plasma apolipoprotein concentrations were measured by electroimmunoassay. Men with high coronary scores tended to have lower plasma high-density lipoprotein (HDL) cholesterol concentrations and higher low-density lipoprotein (density 1.019-1.063 g/ml) cholesterol concentrations than subjects of similar age with low coronary scores (p approximately equal to 0.1). The strongest relation, however, was with the cholesterol concentration in the HDL2 subfraction (density 1.063-1.125 g/ml) of HDL, which averaged 44% lower in the severely affected patients (p less than 0.005). No associations were found between the coronary score and HDL3 cholesterol, the cholesterol content of lipoproteins of density less than 1.019 g/ml, plasma triglyceride, or the concentrations of apolipoproteins AI, AII, and E. The high coronary scores associated with low HDL2 concentrations reflected an increase in the number of both partial and complete stenoses distributed throughout the coronary tree. In contrast the sizes of the lesions and the proportion producing complete occlusion were unrelated to HDL2.  相似文献   

18.
Macrophages synthesize and secrete apolipoprotein E (apoE) constitutively. This process is upregulated under conditions of cholesterol loading. The response to cholesterol is antiatherogenic as it is believed to promote cholesterol efflux from the artery wall. The concentration of lactosyl ceramide (LacCer), a glycosphingolipid recently discovered to regulate cellular signaling, proliferation, and expression of adhesion molecules, is also increased in atherosclerotic tissues. Here we have investigated the effect of exogenous LacCer on macrophage apoE levels. We show that increasing macrophage LacCer levels sevenfold led to reductions in cellular and secreted apoE (15 and 30%, respectively, over a 24-h period) as determined by enzyme-linked immunosorbent assay. A similar effect was also induced by glucosyl ceramide (GlcCer) but not by ganglioside species. When macrophages were converted to cholesterol-loaded foam cells by incubation with acetylated LDL, the resulting increase in cellular apoE levels was inhibited by 26% when the cells were subsequently enriched with LacCer. After metabolic labeling of cellular glycosphingolipids with [14C]palmitate, we also discovered that high-density lipoprotein (HDL) stimulates the efflux of glycosphingolipids from foam cells. These data imply that LacCer and GlcCer may be proatherogenic due to the suppression of macrophage apoE production. Furthermore, the efflux of glycosphingolipids from macrophage foam cells to HDL could indicate a potential pathway for their removal from the artery wall and subsequent delivery to the liver.  相似文献   

19.
ATP-binding cassette transporter A1 and cholesterol trafficking   总被引:11,自引:0,他引:11  
  相似文献   

20.
Scavenger receptor (SR)-BI mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. In Chinese hamster ovary (CHO) cells, SR-BI is predominantly associated with caveolae which we have recently demonstrated are the initial loci for membrane transfer of HDL cholesteryl esters. Because cholesterol accumulation in macrophages is a critical event in atherogenesis, we investigated the expression of SR-BI and caveolin-1 in several macrophage cell lines. Human THP-1 monocytes were examined before and after differentiation to macrophages by treatment with 200 nm phorbol ester for 72 h. Undifferentiated THP-1 cells expressed caveolin-1 weakly whereas differentiation up-regulated caveolin-1 expression greater than 50-fold. In contrast, both undifferentiated and differentiated THP-1 cells expressed similar levels of SR-BI. Differentiation of THP-1 cells increased the percent of membrane cholesterol associated with caveolae from 12% +/- 1.9% to 38% +/- 3.1%. The increase in caveolin-1 expression was associated with a 2- to 3-fold increase in selective cholesterol ether uptake from HDL. Two mouse macrophage cell lines, J774 and RAW, expressed levels of SR-BI similar to differentiated THP-1 cells but did not express detectable levels of caveolin-1. In comparison to differentiated THP-1 cells, RAW and J774 cells internalized 9- to 10-fold less cholesteryl ester. We conclude that differentiated THP-1 cells express both caveolin-1 and SR-BI and that their co-expression is associated with enhanced selective cholesteryl ester uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号